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We provide detailed analysis of the complex eigenenergy spectrum for a two-channel quantum wire with an
attached adatom impurity. The study is based on our previous work �Phys. Rev. Lett. 99, 210404 �2007��, in
which we presented the quasibound states in continuum �or QBIC states�. These are resonant states with very
long lifetime that form as a result of two overlapping continuous energy bands, one of which, at least, has a
divergent van Hove singularity at the band edge. We provide analysis of the full energy spectrum for all
solutions, including the QBIC states, and obtain an expansion for the complex eigenvalue of the QBIC state.
We show that it has a small decay rate of the order g6, where g is the coupling constant of the adatom impurity.
As a result of this expansion, we find that this state is a nonanalytic effect resulting from the van Hove
singularity; it cannot be predicted from the ordinary perturbation analysis that relies on Fermi’s golden rule. We
also show that the QBIC state emerges as a direct result of the destabilization of the stable state that often
exists on the outside edge of a band due to the divergence. As another result of the van Hove singularity, it has
been previously reported that the decay rate of an unstable state is amplified in the vicinity of the band edge
such that it is proportional to g4/3. This again results from a breakdown of the Fermi rule. Here we explicitly
show how the system behaves in the crossover region between the g4/3 region and the Fermi region. Finally, we
calculate the local density of states near the adatom. We are able to demonstrate that the interference between
two unstable states with a very large decay rate and one unstable state with a small decay rate results in a
characteristic asymmetric Fano profile. This effect leads to the best chance of detecting the QBIC by scanning
tunneling microscopy probe.
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I. INTRODUCTION

In a previous letter1 we introduced the quasibound states
in continuum �QBIC states� as resonant states which occur in
certain systems with overlapping continuous energy bands.
Consider the case where one of these energy bands has a
divergent van Hove singularity in the density of states �DOS�
at one of the overlapping band edges. Then a discrete excited
state coupled to these energy bands gives rise to a metastable
resonant state with an extended lifetime. Further, this meta-
stable state has real part of the energy that lies in one of the
bands. This effect cannot be predicted using Fermi’s golden
rule as it breaks down in the vicinity of the singularity.

In our paper, we demonstrated the existence of the QBIC
states in the context of a two-channel quantum wire coupled
to a single adatom impurity. This built on previous work by
Tanaka et al. on a single-channel wire coupled to an
adatom,2 in which they demonstrated various nonanalytic ef-
fects that resulted from the presence of the divergent van
Hove singularity in the electron DOS3 at the edge of the
conduction band; note that these are characteristic effects of
the van Hove singularity in a one-dimensional system. One
of these effects was a bound state that lies just outside of
either edge of the conduction band no matter how deeply the
discrete adatom energy is embedded in the band.2,4–6 We will
refer to this state here as a persistent bound state or persis-
tent stable state as it coexists with the unstable decay states
even though it might be expected to vanish in the case where

no divergence is present. In the present paper, we will show
that when the adatom is coupled to a second energy band that
overlaps the first, this persistent bound state is slightly desta-
bilized due to the fact that it lies in the continuum of the
second energy band. We will explicitly demonstrate that it is
this persistent bound state �when destabilized� that forms the
QBIC eigenstate for the two-channel system; for this pur-
pose, we compare term by term the analytic expansions of
the bound state energy eigenvalue in the single-channel sys-
tem and that of the QBIC energy eigenvalue in the two-
channel system. We will also show that the decay rate for the
QBIC state is �to the lowest order� proportional to g6, where
g is the coupling constant between the adatom and the site to
which it is attached. We assume that g is small in this paper.

We have envisioned the QBIC state as a generalization of
the bound state in continuum �BIC�, originally proposed by
von Neumann and Wigner in 1929.7 Since their initial pro-
posal, a good deal of theoretical study has been devoted to
this phenomenon,8–18 including a recent paper by Longhi, in
which the author demonstrated the presence of BIC states in
a single level semi-infinite Fano-Anderson model19 and an-
other article by Tanaka et al., in which the authors demon-
strated the presence of BIC states in a single-channel quan-
tum wire coupled with multiple adatom impurities.6,20 These
two studies are connected by symmetry considerations.21

There has also been experimental confirmation of the BIC
phenomenon.22,23 However, since it is a zero measure effect
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�meaning that it only occurs at discrete points in parameter
space�, it is generally considered difficult to detect.

As discussed in our previous letter, the QBIC state actu-
ally has a decay rate �due to the imaginary part of the com-
plex eigenenergy� and hence does not technically lie in the
continuous energy spectrum of the conduction band. How-
ever, the decay rate for this state is on the order of g6, much
smaller than the ordinary decay rate that is predicted to be of
the order g2 by Fermi’s golden rule. Hence the QBIC state
will behave as a bound state �with real part of the complex
energy inside the continuous energy spectrum� even on rela-
tively large time scales. We will also show below that the g6

power in the decay rate is a direct result of the interaction
between the divergent van Hove singularity at one of the
band edges and the continuum of the other band.

While the BIC states occur only at discrete parameter val-
ues, the QBIC states occur over a wide range of parameter
space. Hence, it may be much easier to verify the QBIC
effect experimentally. It may also be easier to verify the
QBIC, considering that the effect will likely occur in physi-
cal systems other than the two-channel nanowire; we return
to this point in the conclusion.

We also wish to clarify that the QBIC phenomenon is
distinct from the BIC-like states that have been proposed in
recent years by Rotter and Sadreev.17,18 While the character-
istics of the two types of states are similar �resonant state in
the continuum with narrow width�, the physical origin of
each is quite different. Since the ordinary BIC states may
arise due to symmetry �this can be viewed as a diffraction
effect2�, introducing a small spatial distortion into the Hamil-
tonian leads to a slight destabilization of the BIC, which is
the origin of the BIC-like state as defined in Ref. 18. Hence
the BIC-like states are associated with a spatial distortion in
a single channel, while the QBIC state is associated with an
embedded DOS singularity in a system with multiple
channels.

For the present case, we consider the system shown in
Fig. 1�a�, which is composed of two tight-binding chains and
an adatom or quantum dot impurity. The two tight-binding
chains �labeled y=1,2 in Fig. 1�a�� both have internal hop-

ping parameter −th /2 �internal sites of both chains are la-
beled by integer x, where �x��m with N=2m+1 and N
��1� is the number of sites in either chain, y=1 or 2�. The
two chains are then coupled together site by site with hop-
ping parameter −th�, creating a ladder shape. The dot �labeled
d� is coupled to the x=0 site of the y=1 chain with the
coupling constant g. Hence, we can write the Hamiltonian
for our system as

Ĥ = −
th

2 �
y=1,2

�
x

��x + 1,y��x,y� + �x,y��x + 1,y�� − th��
x

��x,1�

��x,2� + �x,2��x,1�� + g��d��0,1� + �0,1��d�� + Ed�d��d� ,
�1�

in which Ed denotes the energy of the dot. In accordance
with our designations in Fig. 1, the first term here represents
internal hopping along either of the chains �in the x direc-
tion� while the second term describes hopping from one
chain to the other �y=1 to y=2 and vice versa�. The third
term then represents hopping between the adatom and the
�0,1� site of the ladder and finally the fourth term gives the
unperturbed energy of the adatom for g=0.

In order to diagonalize the second term of Hamiltonian
�1�, we introduce the basis

	�x,+ �
�x,− �


 � U	�x,1�
�x,2�


 , �2�

where

U �
1
�2

	1 1

1 − 1

 = U−1. �3�

Using the new basis �x ,�=��, the Hamiltonian can be di-
vided into the �=+ and − chains �with the adatom term� as

Ĥ = �
�=�


−
th

2 �
x

��x + 1,���x,�� + �x,���x + 1,���

− �th��
x

�x,���x,�� +
g
�2

��d��0,�� + �0,���d���
+ Ed�d��d� . �4�

We have now obtained the Hamiltonian in the form of Fig.
1�b�, in which the two �=+,− chains represent two indepen-
dent channels for charge transfer. Note that we can also in-
terpret the label � as electron spin and th� as a magnetic field.
In this case, the adatom term would act as a magnetic impu-
rity similar to that in the Kondo model.24,25

In Sec. II, we will outline two approaches to obtaining the
full diagonalization of the above Hamiltonian. In the first
approach, we will introduce the wave vector representation
to obtain a Friedrichs-type form of the Hamiltonian, from
which we can obtain the energy eigenvalues of the system
following the analysis due to Friedrichs.26 In the second ap-
proach we will rely on the recently presented method of out-
going waves.27

In Sec. III we will present the full energy eigenvalue spec-
trum for the case in which the energy bands associated with
the two channels of the quantum wire overlap; we show the

y = 1

x = −3 −2 −1 0

d

g

1 2 3
y = 2

−th /2

Ed

−th́

−th́

+th́

(a)

x = −3 −2 −1 0

d

1 2 3
σ = +

σ = −
−th /2

Ed

(b)

g/√�2

g/√�2

FIG. 1. �Color online� �a� An adatom �quantum dot� attached to
a ladder. �b� After partial diagonalization in the y direction, the
system is composed of the dot coupled to two independent
channels.

GARMON et al. PHYSICAL REVIEW B 80, 115318 �2009�

115318-2



energy shift and decay rate of the QBIC states. In particular,
we will show that the decay rate of the QBIC states is pro-
portional to g6 and that this effect is a direct result of the
interaction between the van Hove singularity at the edge of
one energy band and the continuum of the other energy band.
We will then examine the wave function and time evolution
and determine the spectral weight for the QBIC state. While
we will find that the spectral weight for the QBIC is small in
comparison to the ordinary Fermi-like resonant state with
decay rate �g2, the expression for the spectral weight will
lead us to an intermediate type of QBIC state with reduced
metastability �decay rate g6���g2� but significantly en-
hanced spectral weight. We refer to this state as an emerging
QBIC.

In Sec. IV we will examine the role of the van Hove
singularity in two other interesting physical effects. In the
first case we will examine more closely the g4/3 decay be-
havior that dominates the energy spectrum when the impurity
energy lies near any of the band-edge singularities, as pre-
sented in earlier studies.2,5 We will show explicitly how the
system crosses over from the region where Fermi’s golden
rule holds �decay rate �g2� to the region where the decay
rate is amplified by the singularity �decay rate �g4/3�. In the
second case we will calculate the local density of states
�LDOS� function near the adatom site. In the vicinity of the
van Hove singularity, we will find that the presence of two
unstable states with decay rate �g4/3 amplified by the singu-
larity and another unstable state with smaller decay rate �g2

will give rise to a specific type of Fano asymmetry in the
LDOS profile, as predicted in Refs. 28 and 29. Finally, we
will study this Fano effect in the case where the impurity
energy lies close to the embedded band edge such that the
emerging QBIC mentioned above is present. We will find
that the presence of this state in the LDOS profile is ampli-
fied by the Fano interference. Hence, this yields the best
chances of experimental detection of the QBIC by scanning
tunneling microscopy �STM� probe.

In Sec. V we will examine the energy spectrum in two
special cases. In the first case the two channels become de-
coupled when th�=0. The energy spectrum then reduces to
that of a single-channel quantum wire coupled with an
adatom.2 In the second case the lower edge of the upper band
coincides with the upper edge of the lower band �that is, th�
= th�. We will then examine the energy spectrum and discover
a modification of the QBIC states resulting from the two
overlapping singularities. Finally, we will examine how the
QBIC decay rate behaves in crossing over from the ordinary
case ��g6� to the modified case ��g4�.

Finally, in Sec. VI we will briefly outline our results and
make our final conclusions. In the Appendix, we summarize
our method for obtaining the numerical simulation for the
time-evolution presented in Sec. III.

II. DISPERSION RELATION AND DIAGONALIZATION
OF THE HAMILTONIAN

In this section we will outline two methods for diagonal-
izing Hamiltonian �4�. In the first we will write the Hamil-
tonian in a Friedrichs form, from which we can immediately

obtain the Green’s function as well as the eigenvalues fol-
lowing the method due to Friedrichs.26 These eigenvalues
will be obtained in the form of discrete solutions to a disper-
sion relation that is equivalent to a 12th-order polynomial.
The discrete solutions of this polynomial give the diagonal-
ized energy shifts and decay rates for an electron in the
adatom.

In the second approach we will rely on the method of
outgoing waves presented recently by Hatano et al.27 This
method will also yield the dispersion relation, but it is better
suited for performing numerical simulations.

A. Dispersion relation from the Friedrichs solution

Imposing here the usual periodic boundary conditions in
the x direction �as we are interested in the case N�1�, we
may introduce the wave vector representation with wave vec-
tors K� in the two respective channels �=� by

�K�� =
1

�N
�

x

eiK�x�x, �� , �5�

where K��n��k with �k�2	 /N and integers n�. This al-
lows us to write Hamiltonian �4� as a variation in the
Friedrichs-Fano model,

Ĥ = �
�=�

�
K�


E��K���K�� +
g

�2N
��d��K�� + �K���d���

+ Ed�d��d� . �6�

The energies E� in the two channels are determined by their
respective wave numbers K� according to

E� = − th cos K� 
 th�. �7�

We refer to the above equations as the dispersion equations
for the continua; this is because in the continuous limit N
→� they describe the allowed energies for the two continua
of K� states. In Fig. 2 we graph these two energy bands for
the case th�� th, in which they will overlap. �By contrast,
below we will write a discrete dispersion equation that de-
scribes how the discrete energy Ed is modified by the inter-
action.� Both of the continuous channels described in Eq. �7�
have an associated DOS function. The normalized DOS
functions for the two channels are given by

E

−0.5

0.5

1.0

−1.0

10 2 3−3 −2 −1

E−

E+

th+ th�

th− th�

− th+ th�

− th− th�

K+,K−

FIG. 2. �Color online� The two continuous dispersion relations
�Eq. �7�� which form two conduction bands �channels� E� in the
wire system. Here we graph the overlapping case in which 0� th�
� th. Energy is measured in units of th=1.
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���E� =
1

	�th
2 − �E � th��

2
. �8�

Note the presence of two van Hove singularities in either
channel. These singularities are located at E= � th+ th� for the
“−” channel and E= � th− th� for the “+” channel.

Since Hamiltonian �6� is in a Friedrichs-like form, in prin-
ciple we may now diagonalize to solve the problem accord-
ing to the method given by Friedrichs26 that provides both
the explicit eigenstates and the dispersion equation for the
eigenvalues. In practice we may quickly find the eigenvalues
as the poles of the Green’s function for the adatom,

Gdd�z� � �d�
1

z − H
�d� , �9�

following the standard method.30 The dispersion relation for
the eigenvalues 
�z�=0 is then obtained after we define

�z�= �Gdd�z��−1. Hence we will leave the details of obtain-
ing the explicit solutions and the dispersion equation to Sec.
II B, in which the method is more suited to conducting nu-
merical simulations for the time evolution of the system.

The dispersion relation for the discrete adatom site is
given by 
�z��z−Ed−�d�z�=0, where the self-energy
�d�z� for an electron embedded in the adatom is determined
by

�d�z� �
g2

2N
�
�=�

�
k�

1

z − Ek�

=
g2

2N
�
k+

1

z + th� − th cos k+
+ �

k−

1

z − th� − th cos k−
�

→
N→� g2

4	
�

−	

	

dk
 1

z + th� − th cos k+
+

1

z − th� − th cos k−
�

=
g2

2 
 1

��z + th��
2 − th

2
+

1

��z − th��
2 − th

2� . �10�

Thus we find the dispersion equation

z − Ed −
g2

2

 1

��z + th��
2 − th

2
+

1

��z − th��
2 − th

2� = 0 �11�

as reported previously.1 From the one-particle perspective,
this dispersion equation describes the behavior of an electron
initially trapped in the adatom. By squaring twice, this equa-
tion can be written as a 12th-order polynomial equation in z.
Hence, we will also refer to this equivalent equation as the
dispersion polynomial. The 12 discrete solutions to this
equation give the allowed bound states �purely real solu-
tions� and resonant states �complex solutions� in the diago-
nalized system. As we will discuss below, these solutions can
be viewed as living in a complex energy surface, param-
etrized by the original impurity energy Ed. In the present
case of the two-channel wire, this energy surface will be
composed of four Riemann sheets.

Once we have obtained the 12 discrete solutions z=E to
the dispersion polynomial, then Eq. �7� implies that each
eigenvalue E can be assigned two K� values. With the values

K� in hand, we will be able to write the wave function for
each solution, making use of Eq. �13� given below. Practi-
cally, this means that any electron state in the wire can be
fully described by the three values E, K+, and K−.

B. Solutions of Hamiltonian by the method of two
outgoing waves

We will now solve the Schrödinger equation,

Ĥ��� = E��� , �12�

for the resonant states ��� of the Hamiltonian given in Eq.
�4�. As has been previously shown,27,28 the resonant eigen-
function of the tight-binding model on a chain with an ada-
tom can be written in the form

���x� � �x,���� = A�eiK��x� �13�

or

�� ��x� � 	�+�x�
�−�x�


 = A+eiK+�x�	1

0

 + A−eiK−�x�	0

1

 . �14�

Using the resonant eigenfunction �Eq. �13�� in the
Schrödinger equation �Eq. �12�� for the case x�0, we obtain

E���x� = Ĥ���x�

= −
th

2
����x + 1� + ���x − 1�� − �th����x�

= �− th cos K� − �th�����x� . �15�

This again yields the dispersion relations E
=−th cos K�
 th� inside the two channels of the wire as given
in Eq. �7� above.

To solve the eigenequation

�d � �d��� and ��x,y� � �x,y��� �16�

for x=0 and �d, respectively, we return to the original y
space. Using the original bases �x ,y� and Eq. �2�, the reso-
nant eigenfunctions ��x ,y�

�� y�x� � 	��x,1�
��x,2�



= U�� ��x�

=
1
�2

A+eiK+�x�	1

1

 +

1
�2

A−eiK−�x�	 1

− 1

 . �17�

With Hamiltonian �1� the Schrödinger equations �Eq. �12��
for x=0 and �d become

−
th

2
���− 1,1� + ��1,1�� − th���0,2� + g�d = E��0,1� ,

−
th

2
���− 1,2� + ��1,2�� − th���0,1� = E��0,2� ,
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g��0,1� + Ed�d = E�d.

Substituting the resonant wave functions � in the site repre-
sentation from Eq. �17� while making use of the continuous
dispersion relations �Eq. �7��, we obtain

ithA+ sin K+ + ithA− sin K− − �2g�d = 0,

ithA+ sin K+ − ithA− sin K− = 0,

g�A+ + A−� + �2�Ed − E��d = 0, �18�

which can be written in matrix form as

�ith sin K+ ith sin K− − �2g

ith sin K+ − ith sin K− 0

g g �2�Ed − E�
��A+

A−

�d
� = 0. �19�

In order to have nontrivial solutions to Eq. �19�, the determi-
nant of the coefficient matrix above must be zero. Hence we
obtain the following condition on A+, A−, and �d:

E − Ed = g2	 1

2ith sin K+
+

1

2ith sin K−

 . �20�

Making use of the channel dispersion equations �Eq. �7��, we
can see that the above condition is equivalent to the disper-
sion equation for embedded electron �11� related to the inter-
action between the adatom and the two � channels.

According to the previous work,2,27 the dispersion equa-
tion for the single-chain model with an adatom is given by

Echain − Ed =
g2

2ith sin Kchain
. �21�

Hence we note that the dispersion equation �Eq. �20�� for the
ladder model corresponds to the sum of two single-chain
dispersion equations.

In the case of the single-chain model,2,6,27 the complex
energy spectrum could be evaluated in terms of a complex
plane consisting of two Riemann sheets. In that case there
was only one wave number Kchain corresponding to the single
channel available to an electron. One can then easily classify
whether a resonant state lies in the first or second Riemann
sheet according to the sign of the imaginary component of
this wave number. For instance, the position of the poles may
also influence the strength of the non-Markovian decay due
to the so-called branch-point effect �this will be the subject
of a future publication�.

In the present case of the two-channel model, there are
two wave numbers K� resulting from the two channels avail-
able to the electron. The imaginary part of these two wave
numbers together provides four possible sign combinations
and hence the complex energy plane is now composed of
four Riemann sheets �see Fig. 3 for an example in the case
0� th�� th�. We can also see that the Riemann surface must
be four sheeted by considering the dispersion equation �Eq.
�11��, in which each of the two roots may take either a posi-
tive or negative sign, again resulting in four combinations
�although one must be careful here as the sign combinations
in this approach change for different portions of the same

sheet�. In the general case of an n-channel quantum wire, the
complex energy surface will be composed of 2n Riemann
sheets.

For the purpose of assignment of each solution to the
correct Riemann sheet, it is more convenient to modify Eq.
�20� with the help of the dispersion equations for the con-
tinua �Eq. �7�� and solve the following set of simultaneous
equations with respect to K� than to solve the dispersion
equation for the adatom �Eq. �11�� with respect to z=E,

− th cos K+ − th� = − th cos K− + th�

= Ed + g2	 1

2ith sin K+
+

1

2ith sin K−

 .

�22�

The signs of Im K� of each solution give the correct Rie-
mann sheet immediately.

Note that the first Riemann sheet is assigned in a natural
way as the energy eigenvalues of all of the solutions in this

IIV

IIIII

Re
E

R
e
E

R
e
E Im
E

R
e
E

R
e
E

Im
E

Im
E

Re
E

Im
E

Re
E

Im
E

Re
E

Im
E

0

0

− th − th́ th + th́

−
t h+

t h́

t h−
t h́

FIG. 3. �Color online� Four-sheeted Riemann energy surface for
the two-channel model in the case 0� th�� th. Solutions of the dis-
crete dispersion equation with the sign combination
�sgn�Im K+� , sgn�Im K−��= �+,+� lie in the first Riemann sheet
�solid black line�. Solutions with the combination �−,+� lie in sheet
II �short-dashed green line�, those with the combination �+,−� line
in sheet III �long-dashed red line�, and those with the combination
�−,−� lie in sheet IV �chained blue line�. The curved lines in the
center of the diagram represent the two branch cuts where the
sheets intersect along their respective real axes. For instance, on the
left side of the diagram, if one starts from the positive imaginary
half of sheet I and crosses the real axis between −th− th� and −th

+ th� �represented by the curved overlapping solid black and short-
dashed green lines� then one will emerge on the negative imaginary
half of sheet II.
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sheet must be real, each corresponding to a bound state in the
energy spectrum analysis �in the complex K� sheets, these
solutions lie on the positive imaginary axis�. This is because
the Hamiltonian must behave in a manner equivalent to a
Hermitian operator in this first sheet with all eigenvalues
being purely real. It is only when the Hamiltonian is ex-
tended into the rigged Hilbert space31 that complex solutions
in the other sheets may be considered on a more equal foot-
ing with the stable solutions in the first sheet and that they
can be interpreted as complex eigenvalues of the Hamil-
tonian in the rigged Hilbert space.32,33

III. ENERGY SPECTRUM ANALYSIS FOR 0� th�� th

AND QBIC STATES

In this section we analyze the eigenenergy spectrum for
the case 0� th�� th, in which the two conduction bands over-
lap as in Fig. 2. In this overlapping case the edge of one band
is embedded in the continuum of the other and vice versa.
This results in two outer band edges and two inner �embed-
ded� band edges �see Fig. 4�.

When the energy of the impurity Ed lies inside the over-
lapping region between the two inner band edges �−th+ th�

�Ed� th− th��, we will find that there exist persistent stable
solutions that lie just outside of the two outer band edges, as
mentioned in Sec. I.2,4–6 As we will see, these stable states
are a direct result of the van Hove singularity in the density
of states at the band edge. For the inner band edges, how-
ever, there will now be two competing effects: the first being
the stabilizing effect of the singularity from the embedded
band edge and the second being the destabilizing effect of
the continuum in which it is embedded �i.e., the second con-
duction band�. This will result in a slightly destabilized state
embedded in the continuum �the QBIC state�.

A. Energy spectrum analysis from the dispersion polynomial

We will now analyze in detail the 12 solutions to the
dispersion equation for the discrete adatom site �Eq. �11��.
Before presenting the full complex energy spectrum as a
function of Ed, we will first consider the eigenenergies at two
specific values of Ed in Tables I and II in order to illustrate
our earlier point regarding the placement of the solutions in
the complex energy surface. In these tables, we present the
values obtained for each of the 12 solutions by solving the
dispersion equation �Eq. �11�� for the eigenenergies E and
the channel dispersion equations �Eq. �7�� for the wave num-
ber pairs K� at the two values Ed=0.3 and Ed=−1.0, respec-
tively. For the other parameters of the system, in both tables
we have used the values th�=0.345 and g=0.1. In these tables
�and throughout this paper� we measure energy in units th
=1. In addition, in Fig. 5 we have indicated the relative po-
sition of each individual pole in the complex K+, K−, and E
planes, each given for the value Ed=0.3 from Table I.

As mentioned previously, the placement of each solution
in the complex energy plane can be determined in a straight-

TABLE I. The 12 discrete eigenvalues for th�=0.345, g=0.1, and Ed=0.3. �Energy is measured in units of th=1.� The decay solutions are
indicated by underlining.

State E K+ K−

Riemann
sheet

P1�0.3� 1.34501152 3.14159265 +i 1.11593256 3.14159265 +i 0.00480148 I

P2�0.3� −1.34500463 +i 0.00304629 +i 1.11592751 I

Q1�0.3� 1.34501136 3.14159265 −i 1.11593245 3.14159265 +i 0.00476787 II

Q2�0.3� −0.65501370 −i 1.5093�10−7 1.25558888 −i 1.5875�10−7 −0.00002882 +i 0.00523534 II

Q3�0.3� −0.65501370 +i 1.5093�10−7 −1.25558888 −i 1.5875�10−7 0.00002882 +i 0.00523534 II

RQ4�0.3� 0.29998854 −i 0.00153774 2.27180290 −i 0.00201224 −1.52576970 +i 0.00153930 II

RQ5�0.3� 0.29998854 +i 0.00153774 −2.27180290 −i 0.00201224 1.52576970 +i 0.00153930 II

R1�0.3� −1.34500459 +i 0.00303273 −i 1.11592748 III

R2�0.3� 0.65509906 −i 2.9331�10−6 −3.14138429 +i 0.01407702 1.88609355 −i 3.0852�10−6 III

R3�0.3� 0.65509906 +i 2.9331�10−6 3.14138429 +i 0.01407702 −1.88609355 −i 3.0852�10−6 III

S1�0.3� 0.29991927 −i 0.01154476 2.27161773 −i 0.01510419 1.52570333 −i 0.01155625 IV

S2�0.3� 0.29991927 +i 0.01154476 −2.27161773 −i 0.01510419 −1.52570333 −i 0.01155625 IV

E

inner band edge outer band edge

0− t h− t h ʹ t h− t h ʹ− t h+ t h ʹ t h+ t h ʹ

0 < t h ʹ < t h

E−

E+

FIG. 4. Band structure for the case 0� th�� th. See Eq. �7� for the
definition of E�.
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forward manner by the sign of the imaginary parts of the two
complex wave vectors K�, which are given as the solutions
of the simultaneous equations �Eq. �22�� �see Fig. 6�. We
have designated those with positive imaginary K+ component
and positive imaginary K− component ��+,+�, respectively�
as lying in Riemann sheet I; likewise we have designated
�−,+� as sheet II, �+,−� as sheet III, and �−,−� as sheet IV.
The resulting eigenenergy E=−th cos K�
 th� of each solu-
tion is shown in Fig. 7. In Tables I and II and Figs. 6 and 7,
we have labeled each solution by a letter P, Q, R, or S ac-
cording to the Riemann sheet �I, II, III, or IV, respectively� in
which that solution lies.

As these solutions are roots of a polynomial with real
coefficients, each complex decay solution �with negative
imaginary part� is accompanied by a complex conjugate
“growth” solution with positive imaginary part. However,
when we calculate the survival probability for the excited
impurity state, only the decay solutions will contribute a pole
in the complex contour integration. Hence, our focus will be

the decay solutions indicated by shading in Tables I and II.
Note that sheet I contains only purely real solutions. This

choice is necessary so that our system with complex eigen-
values �higher sheets� in the rigged Hilbert space simplifies
to that of real eigenvalues in the ordinary Hilbert space in the
finite case �closed system� or when the coupling vanishes.
Also notice that there is one conjugate pair of solutions �RQ4
and RQ5� labeled by two sheets. This is due to the fact that
these solutions lie in sheet III for negative values of Ed and
then cross into sheet II �through the double branch cut on the
real axis of the complex energy plane� for positive values of
Ed. At the same time, the imaginary part of the energy eigen-
value changes its sign; solution RQ5 is the decay solution for
Ed�0, but RQ4 gives the decay solution for Ed�0. These
two solutions disappear for the case th= th� as will be dis-
cussed in Sec. V.

We now analyze the detailed energy spectrum for our lad-
der model in the present 0� th�� th case. In Fig. 8 we present
the real part of the 12 solutions of the dispersion equation

TABLE II. The 12 discrete eigenvalues for th�=0.345, g=0.1, and Ed=−1.0. �Energy is measured in units of th=1.� The decay solutions
are indicated by underlining.

State E K+ K−

Riemann
sheet

P1�−1� 1.34500228 3.14159265 +i 1.11592578 3.14159265 +i 0.00213553 I

P2�−1� −1.34510721 +i 0.01464344 +i 1.11600280 I

Q1�−1� 1.34500226 3.14159265 −i 1.11592577 3.14159265 +i 0.00212886 II

Q2�−1� −1.00545676 −i 0.00659855 0.84940336 −i 0.00878757 −0.00726999 +i 0.81454288 II

Q3�−1� −1.00545676 +i 0.00659855 −0.84940336 −i 0.00878757 0.00726999 +i 0.81454288 II

R1�−1� −1.34510275 +i 0.01433550 −i 1.11599952 III

R2�−1� 0.65500456 −i 2.9002�10−8 −3.14158305 +i 0.00302110 1.88599415 −i 3.0505�10−8 III

R3�−1� 0.65500456 +i 2.9002�10−8 3.14158305 +i 0.00302110 −1.88599415 −i 3.0505�10−8 III

RQ4�−1� −0.65510500 +i 3.2049�10−6 1.25549284 +i 3.3711�10−6 −0.00022112 −i 0.01449328 III

RQ5�−1� −0.65510500 −i 3.2049�10−6 −1.25549284 +i 3.3711�10−6 0.00022112 −i 0.01449328 III

S1�−1� −0.99434007 −i 0.00663666 0.86411247 −i 0.00872637 0.00744838 −i 0.80218340 IV

S2�−1� −0.99434007 +i 0.00663666 −0.86411247 −i 0.00872637 −0.00744838 −i 0.80218340 IV

K+

π−π

P1

Q1

Q2

R1

R3R2

RQ5 RQ4

S2 S1

Q3

P2

K−

π−π

P1
Q1

Q3

R1

R3 R2

RQ4 RQ5

S2 S1

Q2

P2 E

−th−th́ −th+th́ th+th́th−th́

P1Q1Q3R1 R3

R2

RQ4

RQ5

S2

S1

Q2
P2

FIG. 5. �Color online� The relative positions of the poles in the complex K+, K−, and E planes for the value Ed=0.3, as well as th�
=0.345 and g=0.1, as given in Table I. The two vertical dotted lines in �a� and �b� indicate the edges of the Brillouin zone Re K�= �	,
while the four vertical dotted lines in �c� represent the van Hove singularities �at the four band edges�.
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�Eq. �11�� as a function of the impurity energy Ed. We have
also plotted the line Re E=Ed that represents the unperturbed
energy of the adatom for g=0. Hence, the deviation of each
solution from this line represents the energy shift due to the
interaction with the two-channel wire. Then in Fig. 9 we
present the imaginary part of the eight complex solutions.

The behaviors of the two purely real solutions P2 and R1
�Fig. 8�e�� are consistent with the energy spectrum previ-
ously pointed out2,5,6 for the persistent stable states men-
tioned above. For values of Ed�−th− th� far below the lowest
band edge, these two solutions are shifted downward slightly
from the line Re E=Ed. �The shift for both solutions can be
shown to be proportional to g2, though P2 always has the
slightly larger shift.� For values Ed�−th− th� anywhere above
the lowest band edge we find these solutions are shifted
downward instead from the lowermost band edge Re E
=−th− th�, consistent with the previously reported behavior for
the persistent stable state. In Sec. III B 1, we will show that
in this case the shift is proportional to g4.

For values Ed�−th− th� we find that solutions S1 and S2
�lower left-hand corner of Fig. 8�d�� are also purely real.
Since these real states do not lie in the first Riemann sheet,
they are antibound states or virtual states.34,35 As we increase

the value of Ed such that Ed�−th− th� we find that these so-
lutions merge abruptly to form a complex conjugate pair
�Fig. 8�d��. This is similar to the behavior of the complex
solutions in the single-channel model.2 The imaginary part of
these solutions can be seen in Fig. 9�d� and in detail in Fig.
10. Notice in these figures that the decay rate is amplified for
S1 and S2 in the vicinity of each of the four band edges. This
amplification is a result of the breakdown of Fermi’s golden
rule in the vicinity of the van Hove singularity at each of the
band edges. Ordinarily, the golden rule predicts that to low-
est order the decay rate will be proportional to the square of
the coupling constant g2. In our case, we can see Fermi’s
golden rule in Eq. �11�. If a solution z=E of the dispersion
equation �Eq. �11�� is far away from any band edges �th� th�,
it would behave as E�Ed+O�g2� or �Im E��O�g2�. How-
ever, the van Hove singularity in the context of a one-
dimensional system results in a decay rate with a nonanalytic
dependence on the coupling constant, such that to lowest
order the decay rate is proportional to g4/3, as previously
reported.2,5 In Sec. IV A we will take a closer look at this
effect and study the behavior of the system in the crossover
between the region where Fermi’s rule is valid and the am-
plification region near the singularity where the golden rule
breaks down. For now we focus on the QBIC effects.

B. van Hove singularity and the origin of the quasibound
states in continuum

We will now consider the detailed behavior and the origin
of the QBIC effect. The decaying solutions Q2, R2, and RQ4
�or RQ5� �and their conjugate growth partners Q3, R3, and
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FIG. 6. �Color online� The wave numbers K� for the 12 solu-
tions of the set of Eq. �22�. The arrows represent how the solutions
move when we increase Ed from −2 to 2 with th�=0.345 and g
=0.1, where energy is measured in units of th=1. The left-hand �a�
and �c� show the K+ plane and the right-hand �b� and �d� show the
K− plane. In the top, �a� and �b�, the solutions in the upper half
plane are in Riemann sheet I and those in the lower half plane are in
Riemann sheet IV. In �c�, the solutions in the lower half plane are in
Riemann sheet II and those in the upper half plane are in Riemann
sheet III. In �d�, the solutions in the upper half plane are in Riemann
sheet II and those in the lower half plane are in Riemann sheet III.
In the bottom �c� and �d�, solutions RQ4 and RQ5 cross the real
axes from Riemann sheet III into Riemann sheet II when Ed is
increased from negative to positive. The vertical gray lines repre-
sent K�=−	 ,0 ,	.
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FIG. 7. �Color online� The complex energy �parametrized as a
function of Ed� for the 12 solutions of the dispersion equation, with
each energy placed in the appropriate Riemann sheet�s�. The arrows
represent how the solutions move when we increase Ed from −2 to
2 with th�=0.345 and g=0.1. Energy is measured in units of th=1.
The vertical gray lines represent the four van Hove singularities.
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RQ5 �or RQ4�, respectively� each displays this effect in dif-
ferent regions of the energy spectrum. Here we will focus on
solution Q2 as our example in order to demonstrate the prop-
erties of the QBIC states. Taking symmetry into account �see
Fig. 9�, solution R2 behaves in a manner almost analogous to
Q2. Meanwhile a detailed analysis of the integration contour
for the survival probability of the excited state reveals that
solutions RQ4 and RQ5 may be of less significance in terms
of the QBIC effect as they do not contribute a pole �expo-
nential decay� in this calculation. These solutions may play a
more significant role in terms of the non-Markovian decay.
However, we do not discuss this subject in the present paper.

Focusing on solution Q2, we see in Figs. 8 and 9�b� that
the solution is complex with substantial imaginary part for
values of the impurity energy Ed below the lower inner band
edge −th+ th�. Specifically in the range −th− th��Ed�−th+ th�
�between the lower outer band edge and the lower inner band
edge�, solution Q2 is close to Ed with decay rate consistent
with Fermi’s golden rule. In this region, let us expand solu-
tion Q2 around Ed as

EQ2 = Ed + �2g2 + �4g4 + . . . . �23�

Using this expansion ansatz in the dispersion equation �Eq.
�11��, we find that the expansion is indeed consistent and we
have

�2 =
1

2
−
i

��Ed + th��
2 − th

2
−

1

�th
2 − �Ed − th��

2� . �24�

These terms give the first-order decay rate and energy shift,
respectively. We see that the decay rate is given by
�Im EQ2��O�g2� and is proportional to the density of states
�+�E� in the lower channel. Both of these behaviors are con-
sistent with Fermi’s golden rule.
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FIG. 8. �Color online� Real part of the energy for the 12 solu-
tions of the dispersion equation as a function of Ed for the values
th�=0.345 and g=0.1. Energy is measured in units of th=1. In the
top, �a�–�d�, each solution is plotted in the corresponding Riemann
sheet. The overlapping curves represent a complex conjugate pair,
for which the real part of the energy is exactly the same. The ver-
tical and horizontal gray lines represent the four van Hove singu-
larities. In the bottom, �e� and �f�, portions of the top �a�–�d� are
shown with all four Riemann sheets superimposed.
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FIG. 9. �Color online� Imaginary part of the energy for the eight
complex solutions of the dispersion equation as a function of Ed for
the values th�=0.345 and g=0.1. The unit of the energy is th=1. The
vertical gray lines represent the four van Hove singularities.
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FIG. 10. �Color online� Imaginary part of the energy �decay
rate� for solution S1 �sheet IV� as a function of Ed for the values
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However, in Figs. 8�b� and 8�f� we see that as we increase
the value of Ed, the real part of EQ2 departs from Ed and
approaches the inner band edge −th+ th� in a manner similar to
the persistent bound state P2 discussed above. Meanwhile,
the imaginary component of EQ2 does not vanish near the
inner band edge. Instead, the decay rate lies near the value
zero as can be seen in Fig. 9�b� and in greater detail in Fig.
11. This is the QBIC state introduced in our previous letter.1

As can be seen from the figures, the real part of the energy is
embedded in the lower energy band similar to the bound
states in continuum proposed by von Neumann and Wigner,
while the decay rate is nonzero but remarkably small. This
behavior for state Q2 occurs over a wide range of the energy
spectrum, specifically for all values of the impurity energy
that are far above the value of this inner band edge Ed�
−th+ th�. We label this region in the semilogarithmic plot in
Fig. 11�b�.

We will now show that the QBIC effect is a direct result
of two competing effects resulting from the embedding of
the van Hove singularity at the edge of one conduction band
in the continuum of the other band. The first effect is the
tendency of the embedded singularity to create a persistent
bound state; in other words, there would be an ordinary per-
sistent stable state if it was not for the second energy band.
The second effect is the tendency of the embedding conduc-
tion band to destabilize an otherwise stable state. In order to
make this point explicit, we will obtain an analytic expansion
for the energy eigenvalue of the persistent stable state in a
single-channel model �see Fig. 12� and compare this term by
term with a similar expansion for QBIC state Q2 in the
present case �see Fig. 13�. This follows from our discussion
in the previous letter.1

1. Analytic approximation for the eigenenergy for the persistent
stable state in the single-channel model

We may write the Hamiltonian Ĥ− for a single-channel
quantum wire36 with energy shifted by th� as

Ĥ− = −
th

2
�

x

��x + 1��x� + �x��x + 1�� + th�

+
g

�2
��d��0,1� + �0,1��d�� + Ed�d��d� . �25�

We have chosen the energy offset th� here such that the single
energy band for this Hamiltonian mimics that of the upper
energy band �E−=−th cos K−+ th�� in the two-channel model.
This single channel will also have the same density of states
function �− from Eq. �8�. Then the exact form of the disper-
sion equation for the adatom in the single-channel case2,4,6,27

is given by

z − Ed −
g2

2

 1

��z − th��
2 − th

2� = 0. �26�

This is equivalent to a quartic dispersion polynomial after
squaring. Note the presence of the singularities in the third
term at z= � th+ th�; these are a result of the singularities in
the density of states function �− just as in the two-channel
case.
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FIG. 11. �Color online� �a� A linear plot and �b� a semilogarithmic plot of the imaginary part of the energy �decay rate� for solution Q2
�sheet II� as a function of Ed for the values th�=0.345 and g=0.1. The unit of the energy is th=1. The vertical gray lines represent the four
van Hove singularities, just as in Fig. 9. For solution Q2, the decay rate is amplified �such that Im E�g4/3� in the vicinity of the lowest outer
band edge −th− th�. For the portion of the spectrum between −th− th� and the lower inner band edge −th+ th�, Q2 has an ordinary decay rate
Im E�g2. This portion is indicated by green shading in �b�. For values of Ed�−th+ th� the decay rate becomes exceedingly small �with
Im E�g6� as the solution behaves as a full QBIC state. This region is shaded blue in the semilogarithmic plot �b� above. We will study the
portion of the spectrum between these two regions later on in Secs. III C 5 and III C 6.
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FIG. 12. �Color online� Diagrammatic representation of the up-
per energy band E− associated with the �shifted� single-channel

Hamiltonian Ĥ− and the purely real energy associated with the per-
sistent stable state Eps �our focus in the text is on the lower solution
near −th+ th��.
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Now we will obtain an approximate form for the energy
of the persistent stable state as a solution Eps of the single-
channel discrete dispersion equation �Eq. �26��. This ap-
proximation will hold under the assumption that the impurity
energy is much larger than that of the lower inner energy
band, that is, Ed�−th+ th�. The energy of this persistent stable
state and its relation to the energy band E− are represented
diagrammatically in Fig. 12; the definition of E− is given in
Eq. �7�. Considering this observation, we write an expansion
for Eps near the lower band edge −th+ th� in powers of the
coupling constant as

Eps = �− th + th�� + ��g� + ��g� + . . . , �27�

in which 0���� and ��i��1 is independent of the cou-
pling g at every order. The power of g in each term is to be
determined below. Notice that we have “skipped” the � term
in Eq. �27�; this is in anticipation of the appearance of the
decay rate in a similar approximation that we will perform
for the QBIC state further on �cf. Eq. �35��.

We can now use Eq. �27� to write the dispersion equation
�Eq. �26�� as

Eps − Ed =
g2

2

1
�− 2th��g� − 2th��g� + O�g�+�,g2��

.

�28�

We can expand this to obtain

�− th + th� − Ed� + ��g� + ��g�

�
g2−�/2

2�− 2th��

+ g2−�/2O�g�−�,g�� . �29�

The term in parentheses on the left-hand side �LHS� and the
first term on the right-hand side �RHS� represent the two
lowest-order terms. We therefore equate them,

�− th + th� − Ed� =
g2−�/2

2�− 2th��

. �30�

This can be shown to be the only consistent choice. Since the
term in parentheses is zeroth order in g, equating these terms
gives the condition 2−� /2=0 or �=4, as well as

�� = −
1

8th�th� − th − Ed�2 . �31�

The second-lowest-order correction is then given by equating
the second term on the LHS of Eq. �29� with the second term
on the RHS,

��g� = g2−�/2O�g�−�,g�� . �32�

This gives �=2�=8. Making use of Eq. �31�, we can then
write the expansion for the real energy for the persistent
bound state �Eq. �27�� as

Eps = �− th + th�� −
1

8th�th� − th − Ed�2g4 + O�g8� . �33�

We see that the energy shift from the band edge −th+ th� is of
order g4. Notice that it was the cancellation of the band-edge
term −th+ th� when we plugged expansion �27� into the square
root of Eq. �26� that resulted in the g2−�/2 term in Eq. �29�;
hence the persistent stable state is a direct result of the di-
vergent van Hove singularity at the band edge. Also note that
Eps is purely real, including higher orders.

Before returning to the main subject of this Sec. III B, we
briefly mention the general conditions for the presence of the
persistent stable state for a system with a discrete state �here,
the impurity� coupled to a continuum of states through the
potential ��E�. Let us assume the continuum has density of
states ��E� with divergent singularity at a band edge W. The
requirement for the persistent stable state to appear just out-
side this band edge is simply that the self-energy for the
discrete state must diverge at W, which requires19 that

lim
E→W

���E��2��E� → � , �34�

where the divergence must be real. This clearly holds for the
single-channel wire at W=−th+ th� with ��E�=g /�2 and
��E�=�−�E�. Further then, the energy of the discrete state
should be well within the continuum for the persistent bound
state to be actually realized. We note that there do exist cer-
tain one-dimensional models with the square root form of the
DOS singularity in Eq. �8� where nonetheless this condition
is not met. This is because the form of the interaction poten-
tial may cancel the divergence �the antisymmetric solutions
in Ref. 20 and the semi-infinite chain in Ref. 19 give two
examples�. Condition �34� is also a necessary condition for
the QBIC. However, we must make the further condition that
the band edge W is embedded in a second continuum, as we
discuss in the following calculation.

2. Analytic approximation for QBIC state Q2 in the
two-channel model

Now we return to the main subject of this Sec. III B. We
will obtain a similar expansion for the energy of QBIC state
Q2 in the case of the two-channel model. We again present a
diagrammatic representation of the energy of this state and
its relation to the two energy bands in Fig. 13. As before, if
we assume that Ed�−th+ th�, then the real part of the energy
of Q2 will be shifted such that it lies slightly below the lower
edge of the upper energy band at −th+ th� just as in the case of

QBIC state

E

0− t h− t h � t h− t h �− t h+ t h � t h+ t h �

0 < t h � < t h

E−

E+

Q2 R2

FIG. 13. �Color online� Diagrammatic representation of the two
energy bands E� associated with the full two-channel Hamiltonian

Ĥ of Eq. �1� and the real part of the energy associated with the
quasibound state in continuum EQ2 �ER2� that lies below the lower
inner band edge at −th+ th� �above the upper inner band edge at th

− th��. Our focus in the text is on the solution EQ2.
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the persistent stable state. However, in this case the band
edge �and therefore the energy of state Q2 as well� is embed-
ded in the continuum of the lower energy band. It is well
known that the continuum will usually have a destabilizing
effect on a discrete state that is embedded within it. In this
case the embedding will result in a slight destabilization of
the otherwise stable state. For a further illustration of the
relationship between the persistent stable state and the QBIC
state, refer to Figs. 14�a� and 14�b�.

As before, we write the expansion for the energy of state
Q2 as

EQ2 = �− th + th�� + ��g� + ��g� + ��g� + . . . , �35�

where 0������. Here we have included the � term; be-
low we will see that this term results in the small decay rate
giving the QBIC effect. The zeroth-order term −th+ th� places
the solution well inside the continuum of the lower energy
band E+. Looking to discrete dispersion relation �11�, we
note that it is the second term in the square brackets that is
associated with the upper energy band E− including the em-
bedded band edge at −th+ th�; the first term is associated with
the embedding lower energy band E+.37

Putting expansion �35� into Eq. �11�, we obtain

�− th + th� − Ed� + ��g� + ��g� + ��g�

� 	 g2−�/2

2�− 2th��

−
��g�−�+�2−�/2�

4�− 2th��
3

+ g2−�/2O�g�−�,g�,g2��−���

+ 	 g2

2��2th� − th�2 − th
2

+ O�g�+2�
 . �36�

We note that in expression �36� the terms in the first set of
parentheses on the RHS are associated with the embedded
singularity at −th+ th� and those in the second set of parenthe-
ses are associated with the embedding continuum. We will
see that equating one term from each results directly in the
QBIC effect. The essential difference from expansion �29�
for the single-channel model is the existence of the terms in
the second set of parentheses on the RHS. These terms came
from the first term in the square brackets of Eq. �11�, which
is missing in the dispersion equation �Eq. �26�� for the
single-channel model. These terms give rise to the � term in
Eq. �35�.

The lowest-order correction is obtained exactly as in the
case of the persistent stable state above; by equating the first
term on the LHS with the first term in the first set of paren-
theses on the RHS as

�− th + th� − Ed� =
g2−�/2

2�− 2th��

, �37�

we obtain the condition �=4 and Eq. �31� for �� as before.
The second-lowest-order condition is then obtained by equat-
ing the second term in the first set of parentheses on the RHS
of Eq. �36� with the first term in the second set of parenthe-
ses on the RHS �associated with the embedded singularity
and the embedding continuum, respectively�,

��g�−�+�2−�/2�

4�− 2th��
3

=
g2

2��2th� − th�2 − th
2

. �38�

This condition did not exist in the previous case of the
single-channel model. This gives �−�=2 or �=6, as well as

�� = −
i

16th�th� − th − Ed�3�th��th − th��
. �39�

This correction is purely imaginary as th− th��0 in the case
of overlapping bands. This is the QBIC effect, appearing as a
second-lowest-order correction. It is a direct result of the
interaction of the discrete state with the two overlapping en-
ergy bands, as we have just shown. The condition on the
remaining terms in Eq. �36�,

��g� � g2−�/2O�g�−�,g�,g2��−��� , �40�

yields the consistent result �=8 as in the case of the persis-
tent stable state before.

Expansion �35� for state Q2 can now be written as

EQ2 = �− th + th�� −
1

8th�th� − th − Ed�2g4

− i
1

16th�th� − th − Ed�3�th��th − th��
g6 + O�g8� . �41�

Comparison with Eq. �33� above emphasizes that this state
behaves essentially like the persistent stable state that results
from the van Hove singularity. The difference is that in this
case the energy shift places this state in the continuum of the
lower energy band and with a small decay rate at order g6.

For a numerical comparison, we can plug in the numbers
th�=0.345, g=0.1, and Ed=0.3 from Table I, where energy is

channel −

channel −

channel +
(b)

(a)

charge flow due
to interaction

with continuum

a bound state due
to the van Hove
singularity

x

x

x

FIG. 14. �Color online� �a� A schematic view of the persistent
bound state �due to the van Hove singularity� of a one-channel
system with the eigenvalue just below the lower band edge. �b�
Some of the bound particles leak into the attached channel in the
two-channel model, which destabilizes the bound state.

GARMON et al. PHYSICAL REVIEW B 80, 115318 �2009�

115318-12



measured in units of th=1. Plugging these numbers into Eq.
�33� for the persistent stable state in the single-channel case
gives Eps�−0.655 013 701 �this value includes the g8 term
not explicitly given in Eq. �33� above�. Plugging the same
values into Eq. �41� gives the value EQ2�−0.655 013 704
− i�1.5095�10−7� in agreement with the numerically ob-
tained value reported in Table I.

Let us make a few final comments on our expansion. Note
that the expression for EQ2 given above diverges in the case
th�= th. This of course indicates that our expansion breaks
down as th� approaches th. We will find a new expression to
replace Eq. �41� in the special case th�= th in Sec. V. Also,
perhaps it is worth noting that in the limit Ed→� the expres-
sion for EQ2 approaches a purely bound state located exactly
at the inner band edge −th+ th�. Finally, in the endnotes we
mention how to easily transform expression �41� to obtain a
similar expansion for state R2, which is also QBIC under the
conditions Ed� th− th�.

38

3. Smoothness of self-energy function and general
conditions for QBIC state

As a final point regarding the QBIC state in this case, we
note that some initial concern might seem warranted in its
interpretation as a resonant state with an extremely small
lifetime. After all, as we have detailed above, the energy of
this state lies in the vicinity of the band edge, exactly where
the self-energy contains a divergence. We might expect this
to be problematic because the most simple interpretation of
the imaginary part of an energy eigenvalue as a decay rate
for the corresponding state holds only if the self-energy func-
tion �d�z� given in Eq. �10� varies in a smooth manner in the
neighborhood of the energy of this state �the real part of the
eigenvalue�. The scale of the neighborhood we should con-
sider here is the scale of the decay rate �imaginary part of the
eigenvalue�.

We check this point in Fig. 15. In Fig. 15�a� we have

plotted the real part and the imaginary part of �d�z� across
the width of the band spectra, including the four divergent
singularities, using the values th�=0.345 and g=0.1. We have
labeled the real part of the pole Q2 �at the representative
point Ed=0� with an orange “X,” which is shifted slightly to
the left of the divergence at z=−th+ th�. In Fig. 15�b� we have
included a split panel with a magnified view of the real part
of �d�z� �upper plot� and the imaginary part �lower plot�
centered on the position of the real part of Q2. We have
shifted the z axis in these two magnified panels by the value
−th+ th� so that this axis is measured as a distance below the
inner band edge where Re EQ2 lies. Also note that the scale
of the z axis in this case varies by one order of magnitude
larger than the scale of the decay rate of Q2. As can be seen
in Fig. 15�b�, both the real part and the imaginary part of
�d�z� are quite smooth over this range of values. Further, in
either case they vary over an energy scale that is only a
fraction of the characteristic energy of the system th=1.

Notice in Fig. 15�a� that the real part of the self-energy
diverges on the outer side of each of the four band edges.
Meanwhile the two regions between the outer band edges

�th+ th�� and the inner band edges 
�th− th�� are the only
portions of the spectrum in which both the real part and the
imaginary part of ��z� are nonzero. This of course is pre-
cisely the region where the QBIC states occur. Indeed, recall
from Eq. �34� that the condition for the persistent bound state
to appear near a band edge is that the real part of the self-
energy must diverge at that point. This divergence allows for
a very large shift in the perturbed energy �real part of the
eigenvalue� away from the original energy Ed, such that the
energy eigenvalue “sticks” to the band edge. This occurs for
the two-channel model at the outer band edges ��th+ th��
which gives rise to the persistent bound states P1, P2, Q1,
and R1. Meanwhile the QBIC state occurs on the inner band
edges precisely because the real part of the self-energy di-
verges �large energy shift� while the imaginary part remains
finite but nonzero �small decay rate�. Hence, this behavior of

2 1 10 2 z
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0.02

Re Ξ, Im Ξ

− t h− t h � t h− t h �− t h+ t h � t h+ t h �

t h=1
t h � = 0.345
g=0.1

t h=1
t h � = 0.345
g=0.1

z− ( − t h+ t h � )

z− ( − t h+ t h � )

Re Ξ

Im Ξ

0.70

0.68

0.66

0.64

−0.000032 −0.000029 −0.000026

−0.000032 −0.000026

−0.005259130

−0.005259140

−0.005259135

(b)(a)

FIG. 15. �Color online� �a� We plot the real part �blue solid line� and the imaginary part �green dashed line� of the self-energy ��z� across
the band spectra for the two-channel system, using the usual values th�=0.345 and g=0.1, where energy is measured in units of th=1. We
show the position of the real part of solution Q2 �at Ed=0� with an orange X. In �b� we show a magnified view of the real parts �upper half�
and the imaginary part �lower half� of ��z� in the vicinity of the lower inner band edge. The z axis of both plots in �b� is measured as a
distance from this band edge −th+ th� and is centered on the position of the real part of Q2. The scale of the z axis in the magnified plots is
ten times the scale of the imaginary part of Q2 ��g6�. Note that both curves are fairly smooth despite their proximity to the van Hove
singularity in this region.
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the self-energy can be seen as a general indicator for the
QBIC phenomenon.

C. Other aspects of QBIC including wave function analysis,
spectral weight, and the emerging QBIC

In this section we investigate more closely some addi-
tional properties of the QBIC. We will begin by looking
more closely at the wave function for QBIC state Q2. In
particular, we will show that the wave function for Q2 ap-
pears to be localized near x=0, although it actually behaves
as a decaying state with an exponential divergence for large
x. We will also verify that the − channel provides the domi-
nant contribution to this wave function in the vicinity of the
origin. This conforms to our expectations since it is the sin-
gularity associated with this channel that results in the nearly
localized behavior of this state. �Note that we have added
quotation marks on the minus sign above to avoid any con-
fusion in the notation. Hereafter, we will drop the quotation
marks and simply write this as − channel.� We will also
compare the time evolution of the ordinary decaying state S1
with that of Q2 in order to demonstrate that the QBIC decays
on a much more gradual time scale than an ordinary decay-
ing state. We will then calculate the spectral weight of the
QBIC as the residue of the Green’s function. While the spec-
tral weight of the ordinary QBIC will turn out to be small,
the form of the residue function will lead us directly to the
emerging QBIC, a state with reduced metastable properties,
but significantly enhanced spectral weight.

1. Wave function for QBIC state Q2 in the y=1,2 basis

In Figs. 16�a� and 16�b� we plot a numerical result of the
wave function from Eq. �17� in the nondiagonalized channels
y=1,2 for state Q2. Looking at Fig. 16�a� �linear scale� we
see that the wave function for Q2 appears to be localized for
values of x near the origin �where the adatom is attached to
the wire system�. However, in Fig. 16�b� �logarithmic scale�
we see that the wave function indeed behaves as that for a
decaying state with an exponential divergence in space far
away from the origin. Also notice that the contributions to
the wave function from the two original channels y=1,2 are
almost exactly equal in either plot �the two graphs are over-
lapping�.

2. Wave function for QBIC state Q2 in the �=+,− basis

In Fig. 17 we plot separately a numerical result of the
wave function contribution to state Q2 from the + and −
channels �as exemplified in Eq. �14�� in the basis of the par-
tially diagonalized Hamiltonian �4�. We also plot the discrete
wave function associated with the impurity state, each at
initial time t=0 with the usual choice of parameters th�
=0.345, g=0.1, and Ed=0.3. Keeping in mind the numerical
choice for the coupling constant g=0.1, we can see in this
figure that at the origin the amplitude of the wave function
��−�x�� for state Q2 in the − channel is of the order g larger
than that of the adatom wave function ��d� and that in turn
��d� is order g larger than the amplitude of the wave function
��+�x�� in the + channel. This implies that ��+�x�� is order g2

smaller than ��−�x��, owing to the fact that the singularity in
the − channel is responsible for the �dominant� localized be-
havior of the state near the origin.

We may analytically demonstrate the relative orders of the
wave functions by making use of the results that we obtained
for the QBIC state previously in Sec. II B. First we may add
or subtract the first two equations in Eq. �18� to obtain

��d�
����0��

=
�2th

g
�sin K�� �42�

and the channel weight function

��E� �
��+�0��
��−�0��

=
�sin K−�
�sin K+�

=
�th

2 − �E − th��
2

�th
2 − �E + th��

2
, �43�

in which we have made use of Eq. �13� to write ���0�=A�

at the origin x=0. These relations hold for any of the 12
eigenstates of the ladder system.

Let us evaluate this function for QBIC state Q2. We here
use the relations for the QBIC eigenvalue E=EQ2 and the
corresponding wave numbers K�. We can now use expansion
�41� with Eq. �7� to obtain

sin K+ = 2� th�

th
	1 −

th�

th

 + O�g4� �44�

and

−400 −200 2000 400

2

4

6

8

10
|ψ(x,y)|for Q2(0.3)

x
1

|x|

105

103

102 104 106 108

101

10−1|ψ
(x
,y
)|
fo
rQ
2(
0.
3)

(b)(a)

FIG. 16. �Color online� �a� The wave function modulus ���x ,y��
of state Q2 around the origin �linear scale� in the original y basis.
�b� The same but away from the origin on the logarithmic scale. The
�overlapping� plots for y=1 �the upper leg� and y=2 �the lower leg�
are almost indiscernible. The parameters are set to th�=0.345, g
=0.1, and Ed=0.3. The wave function is normalized such that �d

=1.
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FIG. 17. �Color online� The eigenfunction of state Q2 in the �
basis for th�=0.345, g=0.1, and Ed=0.3 on a logarithmic scale as a
function of position. The amplitude modulus of the − channel,
��−�x��, that of the + channel, ��+�x��, and that of the dot, ��d�, are
indicated. The wave function is normalized such that �d=1.
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sin K− = i
1

2th�th� − th − Ed�
g2 + O�g4� . �45�

Applying these in Eq. �42� gives

��d�
����0��

� g
1, �46�

in agreement with our discussion of Fig. 17 above. Finally,
the channel weight function �Eq. �43�� for state Q2 is given
by

��EQ2� =
��+�0��

��−�0��
=

g2th
2

4�th��th − th���− th + th� − Ed�
, �47�

such that the contribution of the + channel is order g2 smaller
than that of the − channel.

3. Generic channel weight function

As mentioned, we may generalize the preceding discus-
sion to states other than Q2. As an application of Eq. �43�,
consider the decaying states S1 and Q2 in the vicinity of the
outer band edge at −th− th�. Here state Q2 will not behave as
a QBIC state with a small decay rate but instead has an
amplified decay rate of order g4/3 in the vicinity of the sin-
gularity at the outer band edge �for example, see Fig. 11�a��.2
State S1 also has an amplified decay rate for this range Ed
�−th− th�. For either of these solutions, Eq. �43� gives
��ES1,Q2��g−2/3, demonstrating that in this case, it is the
lower channel + that provides the largest contribution to the
wave function. The reason for this is that it is the van Hove
singularity at the outer band edge −th− th� �associated with the
lower band edge E+� that results in the amplification of the
decay rate, while the upper channel E− plays little role in this
effect in this region of the energy spectrum.

4. Time evolution for QBIC state Q2 against ordinary
decaying state S1

In Fig. 18 we show the time evolution ��x ,y , t� and �d�t�
for states S1 and Q2 for the choice of the parameters th�
=0.345th, g=0.1th, and Ed=0.3th, under which state Q2 will
behave as a QBIC state. We see that indeed on the time scale
under which the ordinary state S1 decays almost completely,
state Q2 appears to behave as a localized state without a
noticeable decay rate �for this time scale�. The details of the
numerical method by which we have obtained the time-
evolution simulations in these plots are presented in
Appendix.

5. Spectral weight of QBIC state

Up to this point, we have primarily characterized the sys-
tem by the eigenvalues of the dispersion equation �Eq. �11��,
that is, the poles of the Green’s function. However, we can
also characterize the poles by the residues of the Green’s
function, which is interpreted as the spectral weight for each
pole.39 Our goal will be to compare the spectral weight of the
QBIC state with that of the ordinary decaying state that
obeys Fermi’s golden rule. Since we have developed a
straightforward method for generating perturbative approxi-
mations for each of the poles �as in Sec. III B 2�, it is easy to
write a generic formula useful for obtaining analytic approxi-
mations for the residue of the pole. We obtain this formula as

Res�Gdd�z0�� = lim
z→z0

�z − z0�Gdd�z� = r�z0� , �48�

in which we obtain the residue function r�z0� through

�r�z0��−1

� 1 +
g2

2 ��
z0 + th�

��z0 + th��
2 − th

2�3/2 �
z0 − th�

��z0 − th��
2 − th

2�3/2� .

�49�

This relation is determined by application of L’Hôpital’s rule.
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FIG. 18. �Color online� Time evolution of wave function for solutions ��a�–�d�� S1 and ��e�–�h�� Q2 for th�=0.345, g=0.1, and Ed=0.3.
The solid �red� curves represent ��x ,1 , t�, the broken �green� curves represent ��x ,2 , t�, and the dots represent �d�t�. The wave functions
are normalized such that �d�0�=1. The QBIC solution Q2 clearly decays on a much slower time scale than that of the ordinary decay state
S1.
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The signs � in R�z0� are associated with the Riemann sheets
of the complex energy surface and must be chosen correctly
for the appropriate sheet for a given solution �keep in mind
that the signs can change within a single sheet in the energy
representation�. While r�z0� is the exact residue in the above
form, we will use it below as a convenient shorthand for
writing analytic approximations.

It is now simple to obtain the residues for the ordinary
decaying state S1 and QBIC state Q2 for comparison. Let us
assume the impurity energy Ed lies in the vicinity of the
middle of the spectrum, well inside the two inner band
edges. In this portion of the spectrum, state S1 can be ap-
proximately described by Fermi’s golden rule, with the be-
havior ES2�Ed+�g2, with � order unity as usual. Then to
lowest order the residue is given simply by Res�G�ES2��
�r�Ed��1+O�g2�. Here we must choose the sign combina-
tion �−,+� as can be shown to be appropriate for sheet IV in
the middle of the spectrum.

The residue for QBIC state Q2 can then be easily obtained
by plugging in our perturbative result for the eigenvalue EQ2
as given in Eq. �41� into r�z0�. In this manner we obtain

Res�Gdd�EQ2�� �
g4

4th�th� − th − Ed�3 �50�

such that Res�G�EQ2���g4.
Clearly, this gives the Q2 state a significantly smaller

spectral weight, which indicates that experimental detection
might prove challenging. However, notice that the denomi-
nator of this result may provide a way to avoid this problem.
It is clear that when the impurity energy Ed lies near to the
band edge th�− th then the spectral weight of the QBIC state in
Eq. �50� will be dramatically amplified. Of course, our as-
sumption when we derived an approximation for the QBIC
state in Sec. III B 2 was that Ed�−th+ th�, which gives us
pause. Fortunately, we will be able to show in Sec. III C 6
below that state Q2 is still metastable in this “crossover”
region Ed�−th+ th� with a decay rate that is smaller than the

ordinary g2 but larger than the “full” QBIC decay rate g6.
Since this state has the characteristics but not yet the full

decay rate of the QBIC state, we will refer to this as the
emerging QBIC state. We will then refer to the portion of the
spectrum in which the emerging QBIC appears as the cross-
over region. The concept of the crossover region will again
prove useful when we consider in greater detail the decay
rate amplification near the van Hove singularity in Sec.
IV A.

6. Emerging QBIC

As discussed in Sec. III C 5, we now consider in greater
detail the decay rate of the emerging QBIC state in the cross-
over region in which the impurity energy lies in the vicinity
of �but not too near to� one of the inner band edges; we will
be more precise about this statement momentarily. In Sec.
IIB2 we obtained an approximation for the decay rate of
QBIC state Q2 in the region Ed�−th+ th�. In the present sec-
tion our region of interest will be Ed�−th+ th�. In this region
we will find a metastable state with a decay rate that is larger
than the QBIC decay rate g6 but smaller than the ordinary
decay rate g2. Hence we will refer to this as the emerging
QBIC state. Meanwhile we will refer to this region inside but
near the inner band edge �Ed�−th+ th� for Q2� as the cross-
over region. We depict these regions for Q2 in the semiloga-
rithmic plot in Fig. 19�a�. The crossover region is indicated
with red shading in this figure. While the decay rate of the
emerging QBIC is not yet as small as that for the full QBIC,
it is clear from Eq. �50� that the spectral weight of this state
will be amplified relative to the full QBIC. This should ren-
der the emerging QBIC easier to detect experimentally, for
example, by STM probe as will be explored further in Sec.
IV B below.

In order to study the emerging QBIC state Q2 in the
crossover region, let us reparametrize the discrete energy in
terms of its proximity to the inner band edge −th+ th� accord-
ing to
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FIG. 19. �Color online� �a� Same as Fig. 11�b� but with the crossover region g4/3�Ed− �−th+ th���g0 indicated by light red shading. For
this region with values of the impurity energy Ed�−th+ th� that are above but near the lower inner band edge, we have an intermediate
behavior where the decay rate for Q2 becomes metastable with g6� Im E�g2 but has not yet become a full QBIC state with Im E�g6. We
refer to this as the emerging QBIC. �b� The dependence of the exponents �, �, and � in expansion �35� on the exponent � in Eq. �51�. The
broken lines indicate that the expansion terms have real coefficients. The expansion terms indicated by the solid lines have complex
coefficients, which result in the decay rate.
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Ed � �− th + th�� + E�g�. �51�

Here E� is some number of order unity. Hence, this ex-
pression measures distance from the inner band edge in
terms of the order of � in g�. When �=0 we are deep inside
the overlapping region between the bands where the QBIC is
described by Eq. �41�, while ��0 brings us closer to the
inner band edge −th+ th�. By inspection we will find that when
�=4 /3 the amplification effects from the van Hove singular-
ity reassert themselves. Hence the crossover region can be
quantitatively defined in terms of Eq. �51� as the portion of
the spectrum for which 0���4 /3.

We will find below that it is necessary to further subdivide
the crossover region into a far zone �0���1� and a near
zone �1���4 /3�. Here “nearness” refers to the proximity
of Ed to the inner band edge −th+ th�. We will show below that
in the far zone the eigenvalue expansion for Q2 is given by

EQ2 = �− th + th�� −
1

8thE�
2 g4−2� − i

1

16thE�
3�th��th − th��

g6−3�

+ O�g8−5�� �0 � � � 1� �52�

with the emerging QBIC decay rate appearing as the second-
lowest-order term proportional to g6−3�. Meanwhile, in the
near zone we will instead obtain

EQ2 = �− th + th�� −
1

8thE�
2 g4−2� −

1

32th
2E�

5 g8−5� + O�g6−3��

�1 � � � 4/3� , �53�

in which the emerging QBIC decay rate only appears as the
third-lowest-order correction term �the fourth term on the
RHS�. Notice that still this term is proportional to g6−3�, as in
the far zone. Hence the order of the decay rate is actually
continuous across the two zones. The remainder of this sec-
tion is dedicated to obtaining these two results. The reader
who is primarily interested in the physical and experimental
implications of these results �rather than their derivation�
may proceed directly to Sec. IV.

In order to obtain Eqs. �52� and �53� let us apply our
familiar expansion for the QBIC eigenenergy, as given in Eq.
�35�, to the dispersion equation �Eq. �11�� and expand to
obtain

− E�g� + ��g� + ��g� + ��g�

� 	 g2−�/2

2�− 2th��

−
��g�−�+�2−�/2�

4�− 2th��
3

+ g2−�/2O�g�−�,g�,g2��−���

+ 	 g2

2��2th� − th�2 − th
2

+ O�g�+2�
 . �54�

This expression of course is quite similar to expansion �36�,
which we obtained for the full QBIC at �=0; we recover the
earlier expression with the simple substitution E�g�=Ed−
�−th+ th��.

Throughout the crossover region 0���4 /3, the lowest-
order correction is obtained by equating the first term in the
first set of parentheses on the RHS with the first term on the
LHS according to

− E�g� =
g2−�/2

2�− 2th��

. �55�

This is actually the same lowest-order condition �with
slightly different notations� as in the full QBIC case, given in
Eq. �36�. From Eq. �55� we have the condition on � as �
=4−2� for the emerging QBIC state. Notice that �→4 as
�→0, which shows that this lowest-order result then reduces
to the earlier result for the full QBIC �Eq. �41��. We can also
now obtain the condition on ��, given explicitly below.

Meanwhile, for the second-lowest-order condition we
should take some extra care. In the far zone of the crossover
region �0���1� we can obtain the second-lowest-order
correction for the emerging QBIC in the same manner as we
did for the full QBIC. That is, by equating the second term in
the first set of parentheses on the RHS with the g2 order term
in the second set of parentheses,

��g�−�+�2−�/2�

4�− 2th��
3

=
g2

2��2th� − th�2 − th
2

. �56�

This gives us the second-lowest-order condition on � as �
=3� /2=6−3�. As before, this term represents the interac-
tion between the singularity in one band with the continuum
of the other and hence yields the appearance of the meta-
stable decay rate. Indeed, this second-lowest-order correction
yields the full QBIC decay rate g6 as �→6 for �→0. Fi-
nally, we equate the next order terms as

��g� = g2−�/2O�g�−�� , �57�

giving �=8−5�. Thus, after collecting our results up to this
point, we can write the expression for the emerging QBIC in
the far zone as reported above in Eq. �52�. Clearly this re-
duces to the previous expression �Eq. �41�� for the QBIC in
the limit �→0.

However, a problem occurs in the above argument when
��1. Notice at �=1, the order of the g6−3� term and that of
the g8−5� term in Eq. �52� will meet at 6−3�=8−5�=3, as
indicated in Fig. 19�b�. This indicates that at this point, the
second-lowest-order correction ��� and third-lowest-order
correction ��� switch roles. Curiously, the lowest order of the
decay rate itself is actually continuous across this transition,
as mentioned above.

Let us examine the ��1 case in greater detail. At this
point �=4−2��2 such that the ��g� term on the LHS of
our expansion �54� will now dominate over the g2 term in the
second set of parentheses on the RHS. Hence, for the near
zone of the crossover region 1���4 /3 we must obtain the
second-lowest-order correction by equating the second term
in the set of parentheses on the RHS with the g� order term
instead of the g2 term,
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��g� = −
��g�−�+�2−�/2�

4�− 2th��
3

. �58�

This is opposed to the preceding case of the far zone in
which the g�−�+�2−�/2� term �associated with the embedded
singularity� was equated with the g2 term �associated with
the embedding channel� as in Eq. �56�, yielding the QBIC
decay rate �=6−3�. In the present case, this second-lowest-
order contribution yields a purely real contribution to the
eigenvalue of order �=5� /2−2=8−5�. Meanwhile, the
QBIC effect in this case results instead from the interaction
of the g�−�+�2−�/2� term in the first set of parentheses on the
RHS with the g2 term in the second set of parentheses on the
same side,

g2

2��2th� − th�2 − th
2

= g2−�/2O�g�−�� . �59�

This again results in a QBIC decay rate of order �=6−3� in
the region 1���4 /3, although now appearing only at third-
lowest-order perturbation theory as reported above in Eq.
�53�. In the limit �=1 we have �=2 and �=�=3, while in
the limit �=4 /3 we have �=�=4 /3 and �=2. The depen-
dence of these exponents �, �, and � on � is summarized in
Fig. 19�b�. We emphasize that the exponent for the decay
rate varies as 6−3� throughout the crossover region.

IV. DECAY RATE AMPLIFICATION IN THE CROSSOVER
REGION AND THE LOCAL DENSITY OF STATES

PROFILE

In this section we will study the presence of various ef-
fects in the system, each of which will be, directly or indi-
rectly, a result of the divergent DOS singularities. Note that
the first topic we will consider in this section �decay rate
amplification near the DOS singularity� may at first glance
seem like a departure from our main topic, which is the
QBIC. However, the results given in Sec. IV A below will be
helpful to us in our understanding of the Fano effect in the
local density of states in Sec. IV B. Further, we will find that
the Fano effect gives the most apparent candidate for experi-
mental detection of the QBIC. Hence, while we will begin
this section by studying a different type of effect from the
van Hove singularity, we will gradually work our way back
to the QBIC phenomenon.

In Sec. III C 6 we investigated the behavior of the emerg-
ing QBIC in the crossover region. We will begin our studies
of the g4/3 decay rate amplification by conducting a similar
investigation for state S1. We will show that a similar cross-
over behavior occurs between the region near the singulari-
ties and the region far away from them where Fermi’s golden
rule holds. In fact, the region of the energy spectrum where
this crossover behavior occurs is precisely the same as that
for the emerging QBIC. This of course is because both ef-
fects are a result of the divergent DOS singularity.

We will then present some results of the local density of
states �LDOS� calculation that describes the probability for
electron localization at the impurity site as a function of en-
ergy. This can potentially be used as a means to probe the

discrete eigenstates at a given impurity energy Ed by means
of scanning tunneling microscopy �STM�. We will first show
that when the impurity energy lies in the vicinity of one of
the inner band edges, the presence of two strongly amplified
resonant states �due to the singularity� and one resonant state
with a smaller decay rate results in an asymmetric LDOS
profile. This is characteristic of the Fano interference be-
tween discrete states.28,29 Finally we will show the LDOS
profile in the crossover region, focusing our attention on the
emerging QBIC state for the �=1 case discussed in Sec.
III C 6. We will see graphically in this case that the emerging
QBIC is indeed a strong feature in the system, owing in part
to the Fano effect. Hence this may well provide the best
chances for experimental detection of the QBIC.

A. Amplification of the decay rate due to the
van Hove singularity

As we discussed in Sec. III A, the decay rate for certain
states is amplified in the vicinity of the divergent band-edge
singularities, such as state S1; state S1 is the one state that is
actually amplified at all four of them. This effect is not
unique to the present system, but it is quite ubiquitous among
systems that are closed in all but one dimension, having an
energy continuum �or continua� with a cutoff value. When an
excited discrete state is coupled with the continuum near the
cutoff, Fermi’s golden rule breaks down. In most cases this
results in a characteristic g4/3 amplification of the decay rate.
This has been presented previously for a two-level oscillator
coupled with the field modes inside an electromagnetic
waveguide5 and a single-channel quantum wire with an ada-
tom impurity,2 similar to the situation for the S1 state
discussed above.

In order to facilitate later discussion of the Fano effect in
the local density of states calculation we will now consider
this point in greater detail. First we will write an analytic
approximation for the g4/3 decay rate near where the maxi-
mum value is realized and reiterate the conditions under
which this effect should occur. Then we will present another
approximation that describes the decay rate as the system
transitions between the region where Fermi’s golden rule
holds and the region where the g4/3 “rule” is obeyed. We will
use state S1 as our prototype throughout this discussion, but
we will obtain useful results for other states as a by-product
of our development.

From previous work, we know that for these types of
one-dimensional systems the van Hove singularity provides
maximum decay rate amplification in a quite specific domain
of the energy spectrum. If we assume that there is a divergent
van Hove singularity at band edge W, then to lowest order
the decay rate will be proportional to g4/3 when the energy of
the discrete state Ed is within the range �Ed−W��O�g4/3�.
Hence we will refer to this region as the g4/3 amplification
region. The maximum itself tends to occur near the actual
value Ed=W.

1. General characteristics of the g4Õ3 amplification

In the present case of the two-channel quantum wire
model, let us focus on the region �Ed− �−th+ th����O�g4/3�
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around the lower inner band edge. Notice that this is the
region depicted in closeup Fig. 8�f�. Here we see the real
parts of the eigenvalue for six solutions. It is conceptually
useful for us to divide these into three pairs of conjugate
solutions, �Q2;Q3�, �S1;S2�, and �RQ5;RQ4�. Notice that we
have paired these solutions in the format �decay;growth so-
lution�. Also notice that the real values of these solutions
�y axis in Fig. 8�f�� all lie close to the lower inner band edge
−th+ th�=−0.655 �horizontal gray line in Fig. 8�f��. We em-
phasize that in this region state Q2 is not a QBIC state. As
we will see below, each of these six solutions undergoes the
characteristic g4/3 behavior due to the divergent singularity at
the lower inner band edge. However, there is one subtlety in
this case: the g4/3 behavior only affects the energy shift for
the conjugate pair �Q2;Q3�. Hence the decay rate for solu-
tion Q2 in this region only appears at second-lowest-order
perturbation theory. Somewhat ironically, this results in a
decay rate of order g2 for Q2. However, we emphasize that
this result is not related to the Fermi golden rule, as the
golden rule always breaks down in the vicinity of the DOS
singularity. The discrepancy in the magnitude of the decay
rates of Q2 ���g2� and S1/RQ5 ���g4/3� will result di-
rectly in the Fano effect discussed below in Sec. IV B.

We will choose to perform our perturbation calculation at
the exact point Ed=−th+ th�, which is given by the vertical
gray line in Fig. 8�f�. Here we will find that the calculation
will simplify. This point lies also near to that where the
maximum decay rate amplification occurs and will serve
well as a representative of the entire portion of the spectrum
�Ed− �−th+ th����O�g4/3�. Before we undertake the calcula-
tion, let us make a few notes on what we expect to find. First,
note in Fig. 8�f� that the real parts of the conjugate pairs
�S1;S2� and �RQ5;RQ4� lie very close together; they are in-
distinguishable at the point of intersection with the vertical
gray line. This is an indication that the energy shifts �real
parts of the eigenvalues� for each of these four solutions are
equal up to first-lowest order. This will be confirmed by our
calculation. Also notice that these four solutions are shifted
upward from the band edge �horizontal gray line�. Mean-
while the energy shift for the conjugate pair �Q2;Q3� is
downward and is slightly larger than that for the other four
solutions. Finally, notice in Figs. 9�b�–9�d� that at the lower
inner band edge �second vertical gray line from the left in
each graph� the complex part of the eigenvalue for the pair
�Q2;Q3� in Fig. 9�b� is much smaller than that for the other
two pairs �RQ5;RQ4� and �S1;S2� in Figs. 9�c� and 9�d�,
respectively. This is consistent with our statement above that
S1 and RQ5 will exhibit the g4/3 decay resulting from the
singularity, while Q2 will have a smaller decay rate of order
g2. Finally, we note that between the pairs �S1;S2� and
�RQ5;RQ4�, the former has a slightly larger complex part of
the eigenvalue than the latter. This will also come out of our
calculation.

In order to perform the actual calculation, we make the
usual type of expansion EX= �−th+ th��+��g�+��g�+. . . for
the eigenvalue. Here X may be any of the six solutions dis-
cussed above. �Of course, in the end we are primarily inter-
ested in the three decay solutions S1, RQ5, and Q2.� Notice
that in the above expansion, we are assuming that each of the
six solutions has an equal �purely real� eigenvalue at the

lowest order. That is, EX=E�0�+O�g�� with E�0�=−th+ th� for
each solution X. We will find below that including the first-
lowest-order term in this expansion �order �� allows us to
divide the solutions into three pairs, although we must em-
phasize that these pairings are not the same as the pairings
of the type �decay;growth�. Instead, the solutions will be
paired according to the magnitude of the imaginary part of
the complex eigenvalue. Hence, Q2 and Q3 will be paired as
the solutions with the smaller imaginary part of the eigen-
value �these solutions are real to first-lowest order�. Like-
wise, S1 and RQ5 will be paired as the two decaying solu-
tions that experience the g4/3 amplification of the decay rate
and finally S2 and RQ4 are paired as the growth solutions
that experience complex g4/3 amplification as well.

Plugging our expansion for EX into the discrete dispersion
equation �Eq. �11��, we obtain an expansion equivalent to
that in Eq. �36� except that the term on the LHS in parenthe-
ses vanishes �this occurs because we chose Ed=−th+ th��.
Among the terms remaining in Eq. �36�, it can be shown that
the only consistent choice is to equate the following sets of
terms:

��g� =
g2−�/2

2�− 2th��

, �60�

��g� = −
��g�−�+�2−�/2�

4�− 2th��
3

+
g2

2��2th� − th�2 − th
2

, �61�

��g� = g2−�/2O�g�−�,g�� . �62�

We will now consider each of these conditions in turn.
Let us consider the first-lowest-order term in Eq. �60�. It

is easy to obtain the expected order �=4 /3 from �=2
−� /2. After dividing out the g factor on both sides of this
equation, we can obtain the condition on the coefficient �� as
��

3 =−1 /8th. When taking the cubic root to find ��, we must
take care that we use each of the three complex roots. It is
most straightforward to “absorb” the complex factor in this
relation into the negative sign by writing −1=ei	. Then we
have

Re eiz

Im eiz

eiπ/3

eiπ

e−iπ/3

0

FIG. 20. �Color online� The cubic roots of ei	=−1 on the unit
circle. The three roots are given by e�i	/3 and ei	 itself.
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�� = 1/2th
1/3�ei	�1/3, �63�

with th
1/3 now just the ordinary real cubic root of the real

number th. We can then obtain the three complex cubic roots
as �ei	�1/3=ei	 or e�i	/3. We show these three roots on the
unit circle in the complex plane in Fig. 20. Notice that the
first root ei	=−1 is purely real, while the other two roots
e�i	/3= �1� i�3� /2 are complex conjugates with equal �posi-
tive� real part. The first root gives the first-order correction
for the conjugate pair �Q2;Q3�, which are both real to order
�=4 /3. This tells us that the energy shift alone experiences
the g4/3 amplification from the DOS singularity for these two
solutions. These solutions have a shared value ��

Q2,Q3

=−1 /2th
1/3. This leaves the decay rate of solution Q2 “un-

touched” by the singularity at this order.
The two remaining roots e�i	/3 are associated with the

four remaining solutions S1, S2, RQ4, and RQ5, which are
shifted upward from y=Ed in Fig. 8�f� and experience the
g4/3 decay in Figs. 9�c� and 9�d�. Clearly the root e−i	/3

= �1− i�3� /2 is associated with the two decaying solutions S1
and RQ5. Since the imaginary part of this root is nonzero, we
see instantly that the lowest order of the decay rate appears at
order g4/3, conforming to our expectations. Also notice that
the energy shift for these two solutions is positive, whereas
the energy shift for the pair �Q2;Q3� was negative. This
agrees with the graph in Fig. 8�f�. Hence we have the shared
value ��

S1,RQ5=1 /2th
1/3e−i	/3 for the decaying solutions S1 and

RQ5, which are degenerate to first-lowest order. Finally, we
have the remaining root ei	/3= �1+ i�3� /2 that gives the con-
jugate growth partners S2 and RQ4, with ��

S2,RQ4

=1 /2th
1/3ei	/3.

In Fig. 21�a� we �qualitatively� represent the transition
from the lowest-order to the first-lowest-order perturbation
result. In this figure the brown curve represents a circle of
radius ����= �1 /2th

1/3� in a displaced version of the complex
plane. Here we have displaced the origin so that the real axis
originates at the lower inner band edge −th+ th�. In other
words, the origin of this plot is exactly the lowest-order re-
sult E�0� for all six of the eigenvalues presently under con-
sideration. This lowest-order result is shown as the red point
at the origin. The green arrows then represent the magnitude
and direction of the three values of �� as vectors in the
complex plane. These vectors indicate the transition to the
first-lowest-order results for the eigenvalues. The blue dots
represent the three pairs that are degenerate up to this order
of approximation �for example, we have EQ2,Q3

��� =E�0�

+��
Q2,Q3g4/3�. This diagram should be considered qualitative

only, with g effectively set equal to unity.
Turning to the second-lowest-order condition �Eq. �61��,

we can use 2−� /2=�=4 /3 to obtain the order of the cor-
rection � immediately. For each of the three respective terms
we have �=�−�+�=2. We also notice immediately that ��

itself does not appear in Eq. �61�. Instead, only ��
3 =−1 /8th

appears, which is equal for each of the three first-order pair-
ings �in other words, all six solutions�. This implies that a
given pairing will have the same value of �� as the other two
pairings, but we will see that �� has two values, which will
introduce a splitting in each individual pair. Explicitly solv-

ing for �� gives a purely imaginary second-lowest-order cor-
rection according to

�� = �
i

6�th��th − th��
. �64�

We see that this second-order correction provides for split-
ting among the solutions that were paired at first-lowest or-
der. This splitting is represented by the green arrows in Fig.
21�b�, with the up arrows representing the positive value of
Eq. �64� and the down arrows representing the negative
value.

For example, the pairing �Q2;Q3�, which were purely real
at first-lowest order, are now split into a decaying solution
Q2, which takes the negative sign in Eq. �64�, and a growth
solution Q3, which takes the positive sign. Meanwhile, the
other two first-lowest-order pairings are also split. Consider
the decaying solutions S1 and RQ5. Since they were already
complex solutions at order g4/3 with equal decay rates �nega-
tive imaginary parts of the eigenvalue�, they are now split at
order g2 into S1 �taking the negative sign in Eq. �64�� with
the largest decay rate and RQ5 �taking the positive sign� with
a slightly smaller decay rate. In other words, the decay rate
for S1 grows slightly larger at second-lowest order and that

Re E(α)−E(0)

Im E(α)

E(α)Q2,Q3

E(α)S2,RQ4

E(α)S1,RQ5

Q2,Q3χ
α

S2,RQ4χ
α

S1,RQ5χ
α

E(0) Re E(β)−E(0)

Im E(β)

E(β)Q3

E(β)Q2

E(β)S2

E(β)RQ4

E(β)RQ5

E(β)S1(b)(a)

FIG. 21. �Color online� Qualitative diagrams depicting the tran-
sitions from lowest-order correction �one red point� to first-lowest-
order correction �three blue points� and then to second-lowest-order
correction �six black points� in the perturbation calculation for the
three conjugate pairs of solutions, �Q2;Q3�, �S1;S2�, and
�RQ5;RQ4�, at the value Ed=−th+ th� �inner lower band edge�. �a�
Transition from lowest-order correction to first-lowest-order correc-
tion. The brown circle represents a circle of radius ����= �1 /2th

1/3�
�with g=1 for simplicity�. The origin has been offset so that the real
axis is centered on the lower inner band edge −th+ th�, which is the
zeroth-order approximation for each of the six states. The zeroth-
order approximation E�0�=−th+ th� is labeled in red. The green ar-
rows indicate the magnitude and direction of the three values of ��.
These arrows represent the transition to the first-lowest-order ap-
proximation, in which the solutions are divided into three pairs. The
first-lowest-order values of Q2 and Q3 �purely real to first order�,
S2 and RQ4 �two of the growth solutions�, as well as S1 and RQ5
�two of the decaying solutions� are given as blue points on the
circle. �b� Transition from first-lowest-order correction to second-
lowest-order correction. At second-lowest order the three pairs of
solutions are split into six distinct solutions, each labeled in black.
Only at this level does the complex part of the eigenvalue appear
for the conjugate pair of solutions �Q2;Q3�, separating them into
two distinct solutions. It is also at this level that the pair of solutions
�S1;S2� becomes distinct from the pair �RQ5;RQ4�. In this diagram,
the green arrows pointing up represent the positive value for �� in
Eq. �64� and the arrows pointing down represent the negative value.
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for RQ5 is slightly reduced. This is consistent with our ex-
pectations from Figs. 9�c� and 9�d�, in which it is clear that
S1 has the larger decay rate in this region. A similar consid-
eration applies to the solutions S2 and RQ4 that are growth
partners to S1 and RQ5, respectively.

In the end we have

��
Q2 = ��

S1 = ��
RQ5 = −

i

6�th��th − th��
�65�

for the three decaying solutions and

��
Q3 = ��

S2 = ��
RQ4 =

i

6�th��th − th��
�66�

for their respective growth partners. The transition from the
first-lowest-order correction to the second-lowest-order cor-
rection is again demonstrated by the green arrows in Fig.
21�b�. This demonstrates how the first-lowest-order pairings
�three blue dots� are split into six distinct solutions at
second-lowest order �black dots�, all of which are now com-
plex. The six distinct solutions X at second-lowest order
�order �� are represented in this diagram as EX

���.
Finally, we can easily obtain the order of the third-lowest-

order correction from Eq. �62� as �=2�=8. We may now
collect our results for each order to write the perturbative
expansion for the three decaying solutions EX as

ES1,RQ5 = �− th + th�� +
1

2th
1/3

e−i	/3g4/3 
 i
g2

6�th��th − th��

+ O�g8/3� �67�

and

EQ2 = �− th + th�� −
1

2th
1/3

g4/3 − i
g2

6�th��th − th��
+ O�g8/3� .

�68�

We emphasize here the difference in the magnitude of the
decay rate between S1 and RQ5 on the one hand �both have
��g4/3� and Q2 on the other ���g2�. We will see in Sec.
IV B that this discrepancy in the decay rates results in the
asymmetric Fano effect in the local density of states calcu-
lation.

As we have discussed throughout the text, the g4/3 effect
is fairly ubiquitous for systems in which a discrete state is
coupled near the van Hove singularity at the cutoff of a one-
dimensional continuum. The general requirements then for
the presence of the g4/3 effect have been stated in Eq. �34�,
equivalent to the conditions for the presence of the persistent
stable state, apart from the question of which region of the
spectrum these effects occur. The decay rate amplification
occurs in the region �Ed−W��O�g4/3�, while the persistent
stable state occurs for �Ed−W��O�g0�.

2. Decay rate amplification in the crossover region

Now we consider more closely how the decay rate for a
state such as S1 behaves as it transitions between the region
where Fermi’s golden rule holds and the g4/3 amplification

region. We will refer to the former as the Fermi region. The
crossover region between the Fermi region and the g4/3 re-
gion happens to be equivalent to the crossover region that we
discussed in Sec. III C 6 for the QBIC �meaning that the
crossover region for both effects occupies the same portion
of the energy spectra�. In the Fermi region the decay rate is
proportional to the square of the coupling constant g2 multi-
plied by a factor due to the density of states. In the case of
state S1 with real part of the energy near Ed, this state actu-
ally follows Fermi’s golden rule in three portions of the de-
cay spectrum �the three portions laying between and well
separated from the four band edges �see Fig. 10��.

We can easily obtain an approximate description of the
decay rate in, for example, the innermost region between the
two inner band edges �Ed�� �th− th�� by applying the zeroth-
order approximation ES1�Ed to the discrete dispersion equa-
tion �Eq. �11��. Doing so, we obtain the first-order expression
in the Fermi region as

ES1 = Ed − i
g2

2 
 1

�th
2 − �Ed + th��

2
+

1

�th
2 − �Ed − th��

2� + O�g4�

��Ed� � �th − th��� , �69�

where the g4 term gives the energy shift. Notice the factor
that occurs in this expression from the density of states in
Eq. �8� for both channels, just as Fermi’s golden rule pre-
dicts. Of course, the divergence in these factors near the
singularities is precisely the reason Fermi’s golden rule
breaks down in these cases. See Fig. 22 for a depiction of the
three different types of regions for state S1, focusing in on
the portion of the spectrum between the two inner band
edges.

In order to obtain an understanding of how the decay rate
varies in the crossover region, let us again reparametrize the

−0.4 0.4−0.6−0.8 −0.2

−0.005

0

−0.010

−0.015

−0.020

0.2
Ed

Im ES1

crossover region

Fermi region g2

g4/3 amp. region

FIG. 22. �Color online� Here we show a magnified view �in
comparison to Fig. 10� of the imaginary part of the energy �decay
rate� for the solution S1 as a function of Ed for the domain between
the two inner band edges. We have divided this domain into three
types of regions: the Fermi region where Fermi’s golden rule holds;
the crossover region where this law begins to break down; and then
the g4/3 amplification region very near one of the singularities at the
band edges �in this case, the lower inner band edge −th+ th� at the
gray line�. In this last region, Fermi’s golden rule fails entirely.
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impurity energy Ed in terms of proximity to the lower inner
band edge at −th+ th� according to Ed��−th+ th��+E�g� ex-
actly as we did in Eq. �51� for the emerging QBIC. We are
inside the amplification region for ��4 /3, while �=0 places
us in the Fermi region. Hence, we are specifically interested
in the region 0���4 /3 that gives the crossover region.

However, while we have used the same reparametrization
as in the previous calculation, in the present case it is con-
venient to introduce a slight variation in the usual expansion
scheme. In this case, we will explicitly write our expansion
in terms of real and imaginary contributions to the eigenen-
ergy for S1 according to

ES1 � �− th + th�� + E�g� + �Eaga + �Ebgb + . . . + i��g�

+ i��g� + . . . �70�

with each order �Ex contributing to the energy shift �the real
part� and each i�x contributing to the decay rate �the imagi-
nary part�. In previous cases, such as the calculation for the
emerging QBIC in Sec. III C 6, it has not been possible to
explicitly separate these contributions in this way. This is
because either the contributions have been mixed at a single
order �a single term having both real and imaginary parts,
such as occurred in Sec. IV A 1� or there have been compli-
cated equalities that involve three or more terms �such as the
case of the emerging QBIC expansion�. In the present case,
we find by inspection that the expansion breaks down along
the lines of real and imaginary terms when we plug Eq. �70�
into the dispersion equation �Eq. �11��. Hence this expansion
will ultimately aid us in sorting out the contributions at vari-
ous orders.

By inspection we will find that the order ��a throughout
the crossover region, such that the lowest-order contribution
to the decay rate always dominates over that for the energy
shift for S1. Further, we will find that ��� for all values of
� in the crossover region. Precisely the opposite condition
was true in the case of the emerging QBIC calculation in
Sec. III C 6. This is one of the two key differences in the
present case from the emerging QBIC case. The other differ-
ence is that the lowest-order value for the energy of the
emerging QBIC was −th+ th�, while in the case of the partially
amplified state S1 the lowest order is �−th+ th��+E�=Ed.

With the above considerations in mind, we plug our ex-
pansion �70� into the dispersion equation �Eq. �11�� to obtain

�Eaga + �Ebgb + i��g� + i��g�

� 	 g2−�/2

2�− 2thE�

−
i��g�−�+�2−�/2�

4�− 2thE�
3

+
E�g2+�/2

8th
�− 2thE�

−
i��g�−�+�2−�/2�

4�− 2thE�
3

+ ¯
 + 	 g2

4�− th��th − th��

+
�− th + 2th��E�g2+�

16th��− th��th − th��
3

+ ¯
 �71�

after cancellation between the zeroth-order terms Ed that ap-
pear on both sides of the expansion. In previous cases we
were often compelled to equate multiple terms on the RHS
�possibly combined with a term on the LHS� of this type of

expansion to obtain the order exponents and their respective
coefficients. In the case of the above expansion we can ac-
tually equate a single term on the RHS with a single term on
the LHS to obtain each of the order exponents, at least up to
the first few terms that we have included.

We immediately recognize the lowest-order term on the
RHS of Eq. �71� as the first term in the first set of parenthe-
ses since 2−� /2�2 for all 0���4 /3. Noting the negative
under the root, this term is purely imaginary. Thus we are
immediately led to

� = 2 −
�

2
, �72�

i�� =
1

2
�− 2thE� = −

i

2
�2thE�, �73�

which gives ��=−�2thE� /2. Here we have chosen the nega-
tive root for the decaying solution S1. Now let us examine
the second term in the first set of parentheses on the RHS.
Notice that while there is a negative under the root in this
term, there is also a factor of i��. Hence this term is real and
must be set equal to one of the energy shift terms of the
LHS; this will actually be the lowest-order term for the en-
ergy shift. A similar analysis can be used for each term that
appears on the RHS of Eq. �71�. Notice that every term on
the RHS contains an imaginary factor due to a negative un-
der the root in each denominator. Hence, all these terms will
be pure imaginary except for those that contain a factor i�X
for some order X. Hence we see that the second term in the
first set of parentheses �order g�−�+�2−�/2�� determines the
first-order correction for the energy shift, while the fourth
term in the first set of parentheses �order g�−�+�2−�/2�� gives
the next order correction to this quantity,

a = � − � + 	2 −
�

2

 , �74�

b = � − � + 	2 −
�

2

 . �75�

All other terms appearing on the RHS of Eq. �71� are imagi-
nary.

Our task now reduces to determining which contributions
dominate for a given value of � in our range of interest, 0
���4 /3. The lowest-order correction for the energy shift is
given, as we stated above, from the second term in the first
set of parentheses on the RHS. Since we have already deter-
mined �, we can immediately obtain the order as a=�−�
+ �2−� /2�=4−2�. Then we also have �Ea

=−i�� / �4�−2thE�
3�=1 / �16thE�

2�. Finally, we will just find the
order for the second-lowest-order contributions as our cor-
rection terms. It is easy to see that the next lowest-order
correction for the decay rate �order �� comes from the first
term in the second set of parentheses on the RHS; every
other term on the RHS is already accounted for or has an
order greater than 2. Hence we have �=2. Having obtained
�, we can obtain the next correction for the energy shift as
b=�−�+ �2−� /2�=4−3� /2.
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Putting all this together, we can now write our original
expansion �70� for the partially amplified decaying state S1
in the crossover region as

ES1 = Ed +
1

16thE�
2 g4−2� + O�g4−3�/2�

− i	 1

2�2thE�

g2−�/2 + O�g2�

�0 � � � 4/3� �76�

�see Fig. 23�. We emphasize here that the first correction
term, of order 4−3� /2, is the correction term for the energy
shift, while the second correction term of order 2 is the cor-
rection to the decay rate up to our level of approximation.
Hence we see that the decay rate in the crossover region
follows the order g2−�/2 as � varies from zero to 4/3. Note
also that if we choose �=0 we recover the correct order of g2

for the Fermi region and if we choose �=4 /3 we recover the
correct order in the amplification region of g4/3, hence this
result is certainly sensible. We will see in Sec. V B 3 that the
factor g−�/2, which results from the singularity, also arises in
relation to the QBIC effect when the hopping parameter th�
approaches the value of th.

B. Local density of states and the Fano effect

In a nonhomogenous system, it is known that the states
available to the electron are not spatially uniform but instead
may be clumped together in some places more than others.
Hence, for such systems it is useful to introduce the local
density of states �LDOS� �r�E� as a way of measuring the
number of states �as a function of E� at a certain location r in
the system. In our case, our primary interest is the impurity
site that breaks the homogeneity of the two-channel system.
We will therefore focus on the LDOS at this site in the
present section. The LDOS function at a certain point in
space is defined to be proportional to the imaginary part of

the Green’s function at that point divided by a factor of 	.30

The LDOS is a convenient quantity for connecting with
experiment as it can be probed directly through scanning
tunneling spectroscopy using scanning tunneling microscopy
�STM� probe. The STM is a powerful tool, useful in the
determination of the structural and electronic properties of
surfaces on the atomic scale.40 The STM probe itself is es-
sentially a small metal electrode with a very narrow tip �tip
radius of �100 Å�. When the tip of the probe is brought
very close ��10 Å� to the sample surface, electrons may
tunnel through the vacuum barrier separating the tip and the
sample. This tunneling current IT is sensitive to the distance
and the bias voltage VB between the tip and the sample.
Varying VB effectively shifts the Fermi energy in the probe;
this changes the range of energies in which electrons are
allowed to participate in the tunneling. By studying how IT
changes with VB, the experimentalist may probe the LDOS at
a particular point on the sample surface �e.g., at the adatom�.
Using first-order perturbation theory, it can be shown that the
quantity d ln IT /d ln VB is proportional to the LDOS mea-
sured at the effective Fermi level in the probe. This particular
application of the STM probe is referred to as scanning tun-
neling spectroscopy. While this technique may not work in
such a straight-forward manner for Fermi energies near the
band edges, there are methods for dealing with this case as
well.41

Below we will present the LDOS function at the adatom
site for various values of the adatom impurity energy Ed.
When we choose a value for Ed near one of the inner band
edges, we will find an example of the asymmetric Fano ef-
fect due to interference between multiple resonant states that
have nearly the same real part of the eigenvalue but differing
decay rates. As a special case, we will also present the LDOS
for the case in which Ed lies inside the crossover region. In
fact we will focus on the �=1 case discussed in Sec. III C 6
for the emerging QBIC such that the spectral weight of this
state is amplified relative to the ordinary QBIC. We will see
that the peak associated with the emerging QBIC in the
LDOS spectrum will also have the characteristics of the Fano
interference. This results in the peak being a more prominent
feature in the spectrum than in the case of the ordinary
QBIC.

Since we have already defined the Green’s function for
the impurity site in Eq. �9�, we can immediately write the
LDOS function �d�E� �Ref. 30� as

�d�E� � �
Im Gdd�E�

	
. �77�

Ordinarily the LDOS is simply defined with a negative sign;
however, since we are dealing with a more complex Green’s
function in a four-sheeted Riemann surface, we find that it is
necessary to use the positive sign in the case Ed�0 to main-
tain physically sensible results. We plot this function for four
representative cases in Figs. 24�a�–24�d�.

In Fig. 24�a� we have plotted �d�E� for the same values,
including Ed=0.3, as we used in Table I in Sec. III A. Note
that we have labeled the real parts of the eigenvalues for
each pole of the Green’s function; we have used a blue dot to
label the two poles S1 and RQ4 that lie near to Ed �the real
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FIG. 23. �Color online� The dependence of the exponents �, �,
a, and b in expansion �70� on the exponent � in Eq. �51�, as deter-
mined in the final expansion �Eq. �76��. The solid lines indicate that
the exponents affect the decay rate �the imaginary part of the eigen-
value�, while the broken lines indicate that the exponents affect the
energy shift �the real part�.
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part of these two poles lie almost directly on top of one
another and are indistinguishable in this graph�. In this case,
S1 and RQ4 follow the Fermi decay behavior. We then use
golden diamonds to label the real parts of the QBIC states
Q2 and R2 at the two inner band edges. Finally we use
purple squares to label the persistent stable states at the outer
band edges. These latter states are of course purely real. It is
clear from the plot that the Fermi-like resonance states S1
and RQ5 dominate the spectrum over the poles that lie on the
inner and outer band edges. This is consistent with our ex-

pectations in the case of the full QBIC since we have shown
in Sec. III C 5 that the residue for the QBIC states is much
smaller than the Fermi-like states.

Next, in Fig. 24�b� we have plotted �d�E� for the value
Ed=−1.0 that we used in Table II. Again we see that the
Fermi states lying near the impurity energy Ed dominate over
the QBIC states at the band edges.

In Fig. 24�c� we plot �d�E� for the case where the impu-
rity energy lies directly on the lower inner band edge Ed
=−th+ th�, which is precisely the case �g4/3 amplification re-
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FIG. 24. �Color online� The LDOS function �d�E� for four representative cases: in �a� we plot the case Ed=0.3, which is the same value
as presented in Table I; in �b� we plot the case Ed=−1.0, which is the same value as presented in Table II; in �c� we plot the case Ed=
−th+ th�=−0.655, in which we see the Fano effect due to interference between multiple poles near the inner band edge; and in �d� we plot the
case Ed=−th− th�=−1.345. In each case we use the typical values th=1, th�=0.345, and g=0.1. The main plot in each case shows the full scale
of the vertical axis over the entire domain of the two energy spectra, while the inset magnifies near the origin for the vertical axis while also
presenting the entire energy domain. The blue dot shows the real part of the energy eigenvalue for either Fermi-like states or states with
amplified decay rate. Meanwhile the gold diamonds label either QBIC or emerging QBIC states that lie on the inner band edges and the
purple squares show the persistent stable states that always lie just outside the outer band edges. �e� A closer view of the LDOS function
�d�E� �solid blue curve� near the inner band edge −th+ th� for the value Ed=−th+ th�=−0.655 used in the panel �c�. We also plot the
approximate form for the Fano profile �Fano�E���� �chained green curve� given in Eq. �82�. The horizontal axis is the ordinary energy scale
E �or E��� for the chained green curve� magnified near the lower inner band edge. The blue dot denotes the location of the real parts of the
poles S1 and RQ5 with decay rate �g4/3, while the gold diamond gives the location of the real part of the pole Q2 associated with the band
edge and having a smaller decay rate �g2.
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gion� for which we have obtained the analytic expansions for
states S1, RQ5, and Q2 given in Eqs. �67� and �68�. We
remind the reader that when the impurity energy lies near to
�or at� this band edge, state Q2 �golden diamond here� does
not obey the QBIC behavior here but instead has a decay rate
of the order g2. Meanwhile states S1 and RQ5 �blue circle�
have decay rates of order g4/3 due to the band-edge diver-
gence.

Investigating Fig. 24�c� we see that a unique phenomenon
has emerged in the LDOS profile in this case: two peaks
appear together here around the band edge −th+ th� with an
asymmetric overall shape. Indeed this asymmetric shape is a
result of interference between the two discrete poles with a
very large decay rate �S1 and RQ5 with decay rate �g4/3�
and the pole with a smaller decay rate �Q2 with decay rate
�g2�. This precise effect was previously explained for the
case of only one pole with large decay rate and one pole with
a smaller decay rate,28,29 although note that in the present
case the taller peak in Fig. 24�c� is associated with the state
with the smaller decay rate. Also note that this asymmetric
Fano effect occurs over a wide range of values near the inner
band edges. We focus for now on the special case Ed=−th
+ th� because it is straightforward in this case to obtain some
approximations that give insight into the phenomenon as a
whole. We return to this point momentarily.

Beforehand, consider Fig. 24�d� in which we plot the
LDOS function for the case where the impurity energy this

time lies directly on the outer band edge Ed=−th− th�. In this
case, no Fano effect occurs because there are only two reso-
nant states present �S1 and Q2, blue circle� and they both
have decay rates of the same order �g4/3 that are almost
equal. There are also two persistent stable states present �P2
and R1, purple square� near the outer band edge, but they are
both purely real and hence in this case there is no interfer-
ence effect.

Returning to the case of Fig. 24�c� with Ed at the lower
inner band edge, in Fig. 24�e� we plot a magnified view of
�d�E� �solid blue curve� near the inner band edge −th+ th�,
where the Fano effect occurs. The antisymmetric shape is
quite clear here. By using a slight variation in our standard
perturbation method in this paper, we can obtain a useful
approximation for analytically describing the shape of the
asymmetric Fano peak. In order to obtain this expression, we
set Ed=−th+ th� in �d�E� and then reparametrize the energy
variable E according to

E��� � − th + th� + �g4/3. �78�

We choose this particular form as a simple ansatz reflecting
the fact that the g4/3 behavior is the dominant characteristic
in this region. Our choice is borne out by the accuracy of the
resulting approximation. Plugging our reparametrization into
Gdd�E� and expanding, we obtain

Gdd�E���� = 	�g4/3 +
g2

2
� 1

��− th + 2th��
2 − th

2 + 2��− th + 2th����g4/3 + ¯

+
1

�− 2th�g4/3 + �2g8/3 + ¯

�
−1

. �79�

We reorganize and expand the roots in the denominator on the RHS to obtain

Gdd�E���� � ��g4/3 +
g4/3

2�− 2th�
	1 +

�

4th

g4/3 + ¯
 +
g2

4�− th��th − th��

1 +

�− th + 2th��

4th��th − th��
+ ¯��−1

. �80�

Finally we expand the denominator itself and find

Gdd�E���� �
g−4/3

�� + 1/2�− 2th��
�1 −

1

4�− th��th − th���� + 1/2�− 2th��2
g−2/3 + O�g4/3�� . �81�

Notice that the denominator of the coefficient in this expression will be complex for values of ��0. According to our
reparametrization �Eq. �78�� this is equivalent to an energy value E�−th+ th�, lying to the right of the lower inner band edge.
Since �d�E� is proportional to Im Gdd�E�, this means that the first term �order g−4/3� will give the lowest-order contribution to
the LDOS profile for ��0. On the other hand, for values of ��0, such that E lies to the left of the lower inner band edge,
the first term on the RHS of Eq. �81� will be purely real. However, notice that the second term contains an explicit factor of
i due to the negative under the root in the denominator. Hence this term is complex on both sides of the band edge, ��0 and
��0. Factoring out this term i, we can then take the real part of this term to find its contribution to the LDOS profile. We can
therefore write our approximate LDOS Fano function �Fano�E���� as follows:
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�Fano�E���� =�Re
 1

4	�th��th − th���� + 1/2�− 2th��2�g−2/3 + O�g2/3� �� � 0�

Im
 1

	�� + 1/2�− 2th��
�g−4/3 + Re
 1

4	�th��th − th���� + 1/2�− 2th��2�g−2/3 + O�g0 � 1� �� � 0�

.�
�82�

Notice that the factor in the denominator ��+1 /2�−2th��
=0 at the value �=−1 /2th

1/3 for ��0. Hence there is a diver-
gence that appears in the first line of Eq. �82� only. Plugging
this value of � into our reparametrization �Eq. �78��, we see
that his value is equivalent to E= �−th+ th��−g4/3 /2th

1/3. This is
precisely the first-order approximation for the position of the
pole Q2 given in Eq. �68�. Hence, this divergence represents
the presence of the pole with the smaller decay rate ��g2� to
the left of the lower inner band edge �gold diamond in Fig.
24�e��. We can clearly see this divergence in the chained
green curve in Fig. 24�e�, which represents our approxima-
tion for the Fano effect �Fano�E����. Our approximation func-
tion captures both the qualitative and quantitative character-
istics of the asymmetric Fano behavior, including the fact
that �Fano�E����=0 right at the inner band edge ��=0� and
the wide shallow peak around the states S1 and RQ5 �blue
dot� with the larger �greater width� decay rates �g4/3. In fact,
apart from the divergence the two graphs are almost indis-
tinguishable.

Finally we consider the LDOS function for another situa-
tion in Fig. 25. Here we plot �d�E� for the case Ed=−0.6
��=1�, which places the system exactly at the point in the
crossover region that we have discussed previously in Sec.
III C 6. Hence, the decay rates for S1 and RQ5 �blue dot� are

partially amplified by the singularity at −th+ th� with decay
rate �g3/2 as described by Eq. �76�, while state Q2 �gold
diamond� is an emerging QBIC state with small decay rate
�g3 as described in Sec. III C 6. As can be seen in the graph,
the Fano effect is still present due to the proximity of the two
states with larger decay rates and the emerging QBIC state,
though the effect is less pronounced now. The emerging
QBIC state Q2 is clearly represented by the thin peak owing
to the very small decay rate, as we have seen near the band
edges in the previous plots. In this case, however, this peak is
a prominent feature of the LDOS spectrum. Indeed, the Q2
peak here is comparable to the other primary feature in the
spectrum, the S1/RQ5 peak resonant with the impurity en-
ergy Ed. As we have seen in Figs. 24�a� and 24�b�, the peak
resonant with Ed in the most typical cases completely domi-
nates the LDOS spectrum. In this case, the emerging QBIC
with enhanced spectral weight also makes a strong presence.
Judging from the asymmetric line shape in Fig. 25, this
strong presence seems to be attributable, at least in part, to
the Fano interference.

V. ENERGY SPECTRUM ANALYSIS IN
TWO SPECIAL CASES

In this section, we will briefly consider the energy spec-
trum analysis for two special cases. In the first special case
�th�=0� the two-channel model reduces to the single-channel
model when the chain-to-chain hopping parameter th� van-
ishes. Even though this case might seem trivial at first
glance, it is instructive to see the relation of the two-channel
model to the single-channel model. Then we will consider
the case th�= th. Here we will find that the 12th-order disper-
sion polynomial reduces to a tenth-order polynomial, while
the QBIC decay rate is amplified such that it is proportional
to g4 in the first-order perturbation; both embedded singulari-
ties play a role in this modified QBIC effect as we will show.

A. Energy spectrum for th�=0 case

Here we will comment on the case th�=0, in which the
chain-to-chain hopping parameter vanishes. Since the ada-
tom is then coupled to only one chain, it is to be expected
that this system should reduce to the single-chain model
�along with an additional uncoupled chain�. Indeed, consid-
ering the discrete dispersion equation �Eq. �11�� we see that
for th�=0 the two terms on the RHS containing the square
roots will agree. Therefore, in the case where the sign of the
two square roots agrees, these two terms will combine to
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FIG. 25. �Color online� The LDOS function �d�E� for the case
Ed=−0.6, which places the system inside the crossover region de-
scribed in Sec. III C 6. The decay rates for the states S1 and RQ5
�blue dot� are therefore partially amplified by the nearby singularity
at the inner band edge −th+ th� and the asymmetric Fano line shape is
still present. Meanwhile, the emerging QBIC state Q2 �gold dia-
mond near −th+ th�=−0.655� is clearly visible in the spectrum with a
tall thin peak. We use the typical numbers th=1, th�=0.345, and g
=0.1. Inset: a magnified view near the inner band edge.
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give a new dispersion equation equivalent to that for the
single-channel model �equal to Eq. �26� after setting th�=0
and replacing with the renormalized coupling constant g�
→�2g�. This case corresponds to sheets I and IV in the
complex energy surface, which contain four solutions �two in
each sheet�. These four solutions then behave precisely as the
four solutions to the quartic dispersion polynomial in the
original single-channel model.

Meanwhile, for the case in which the signs of the two
square roots in Eq. �11� are opposite, then these two terms
cancel and the dispersion equation becomes trivial. This case
corresponds to sheets II and III, which contain eight solu-
tions. Meanwhile, since the two branch cuts in this case over-
lap exactly, sheets II and III become mathematically �and
physically� inaccessible. If one travels through the branch cut
in sheet I, one will always appear in sheet IV �and vice
versa�. Hence the energy surface is effectively two sheeted
and, for our purposes here, essentially equivalent to that in
the single-chain system.

B. Energy spectrum for th�= th case

In the case th�= th, the two inner band edges will overlap to
form a single embedded band edge as indicated in Fig. 26.
Note that, in a certain sense, both band edges are still
present. In fact, we will find that in this case the van Hove
singularity from one overlapping band edge will actually am-
plify the QBIC decay rate that results from the van Hove
singularity of the other band edge, so that the decay rate will
now be proportional to g4. This is a unique combination of
two previous effects, both resulting from the van Hove sin-
gularity.

1. Tenth-order dispersion polynomial for the th�= th case

If we set th�= th in Eq. �11�, then the dispersion equation
for the adatom becomes

z − Ed −
g2

2��z�

 1

�z + 2th

+
1

�z − 2th
� = 0. �83�

Note that here the position of a solution in the complex en-
ergy surface should be determined only by the two square
roots 1 /�z�2th; the overall factor of 1 /��z� plays no role in
this determination. However, this overall factor represents
the presence of a van Hove singularity at z=0 in both bands.

As before, we can square this equation twice to find an
equivalent tenth-order dispersion polynomial; hence two so-
lutions have vanished from the system in comparison to the
general case. Specifically, the two solutions RQ4 and RQ5

are no longer present. Note that the QBIC solutions Q2 and
R2 remain in this simplified system.

As was done in Sec. III A and in Fig. 6, it is more con-
venient for the purpose of placement of each solution in the
correct Riemann sheet to solve

− th cos K+ − th = − th cos K− + th

= Ed + g2	 1

2ith sin K+
+

1

2ith sin K−



�84�

with respect to K� than to solve the discrete dispersion equa-
tion �Eq. �83�� with respect to z=E. The imaginary parts of
the solutions of the above simultaneous equations give the
correct Riemann sheet. The eigenenergy of each solution is
then given by the channel dispersion equations,
E=−th cos K�
 th.

The dependence of the real and imaginary parts of all the
solutions on Ed can be seen in Figs. 27 and 28, respectively,
for the value g=0.1 for the coupling.

2. Modified QBIC effect

As in the general case, solutions Q2 �for Ed�0� and R2
�for Ed�0� are QBIC states. Their real parts behave similar
to the persistent stable states in that they lie near to the em-
bedded band edge at z=0 in Fig. 27. However, they have a
small nonzero decay rate as can be seen in Fig. 28. We can
obtain an approximate form for the energy eigenvalue for
these states in a manner similar to that we employed before
in the general case. Figure 27�b� shows that the real part of
the energy for Q2 is also small with a value that lies near the
origin on the y axis. Hence, we assume that the expansion of
EQ2 begins with the order g� with ��0 as EQ2=��g�+¯.
Applying this expansion in Eq. �83� and using a similar
argument as that given in Sec. III B give

��� = g2−�/2 1

2�2thEd

�1 − i� , �85�

in which the two terms in parentheses �both of which are
necessary for EQ2 to be complex� have been contributed,
respectively, by the two bracketed terms on the LHS of Eq.
�83� and the factor 1 /��z� associated with the van Hove sin-
gularity in both terms has resulted in the factor g2−�/2. We
then obtain the condition for the order of � as �=4 as well as
��=−i / �4thEd

2�, from which we can write

EQ2 = − i
g4

4thEd
2 + O�g8� . �86�

We see that state Q2 is still quasistable in comparison to the
ordinary decay rate proportional to g2. However, the QBIC
decay rate has been amplified, so that it is proportional to g4

�instead of g6 in the general case as given in Eq. �41�� due to
the overlapping band edges. In a sense, the embedded van
Hove singularity at z=0 from the E− band has resulted in a
QBIC state, while the singularity from the E+ band has am-
plified the usual decay rate of g6 to g4. Solution R2 has the
same behavior for Ed�0 with the role of the bands reversed.

0

E

single embedded band edget h= t h �

E+ E−

− 2 t h
− t h

t h
2 t h

FIG. 26. Band structure for the th�= th case with a single “uni-
fied” embedded band edge in the center of the spectrum.
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Indeed, the channel weight function �Eq. �43�� reduces to

��E� =�E + 2th

E − 2th
�87�

for th�= th and gives ��EQ2�� i for the specific case of the
QBIC state. Thus both channels contribute equally in this
modified QBIC effect.

3. QBIC effect in transition to the modified g4 case

In Secs. III C 6 and IV A 2, we studied the behavior of the
emerging QBIC and the �partial� decay rate amplification in
the crossover region, respectively. Here we consider a similar
type of crossover behavior, though in this case we will vary
the value of th� instead of Ed. In particular, we will now
investigate the details of how the QBIC decay rate transitions
between the g4 behavior for the special case th�= th and the
generic case of the g6 behavior for th� well separated from th
�more specifically, th�� th�. Following the spirit of our previ-

ous analysis, we reparametrize th� according to

th� = th − �g�. �88�

Similar to the previous crossover analyses, we will find that
the g4 behavior for the QBIC decay rate appears precisely in
the region where �=4. Hence our range of interest will be
�=0 �the generic g6 case� up to �=4.

Applying this reparametrization to the discrete dispersion
equation �Eq. �11�� yields the result

EQ2 = − �g� −
1

8thEd
2g4 + O�g4+��

− i	 1

16thEd
3�th�

g6−�/2 + O�g6+�/2,g8−��
 . �89�

�Equally well, we can just plug the reparametrization for th�
into the generic approximation �Eq. �41��, which gives the
above result immediately upon expansion.� This result is
again consistent with our expectations since the decay rate
for Q2 will vary from first-order g6 dependence for �=0 and
g4 dependence for �=4. Note the presence of the familiar
g−�/2 factor, which is the same factor that appears in Eq. �76�
for the crossover to the g4/3 amplification region in the case
of state S1. The r-appearance of this factor seems to indicate
that this is a generic “amplification” behavior resulting from
the one-dimensional van Hove singularity. This view is sup-
ported by noting that this factor does not appear in Eq. �52�,
in which there is no decay rate amplification occurring; the
destabilization that occurs in that case is a result of the em-
bedding continuum and not of the embedded singularity.
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FIG. 27. �Color online� Real part of the energy for the ten so-
lutions of the simplified dispersion equation �Eq. �83�� as a function
of Ed for the special case th�= th with the choice g=0.1. The unit of
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the three van Hove singularities. In the bottom �e�, the lower left-
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VI. CONCLUDING REMARKS

We have demonstrated the existence of the QBIC state in
the context of a two-channel quantum wire with an attached
adatom impurity. Ordinarily, an electron in the impurity with
an energy deep inside of the conduction band of the wire
would be expected to decay and travel along the length of the
wire. We might also expect that we could describe the decay
rate using Fermi’s golden rule. However, due to the com-
bined effect of two overlapping conduction bands �with van
Hove singularities at the band edges�, we have shown that a
QBIC electron will remain stable inside the impurity for or-
dinary time scales. In particular, we have demonstrated the
connection between the QBIC state and the persistent stable
state that results from the van Hove singularity at the band
edge in the single-channel model. In the two-channel model,
this persistent stable state is slightly destabilized as a result
of being embedded in a second conduction band.

We have also shown in Eq. �41� that the characteristic
decay rate for the QBIC is generally on the order of g6,
although this may be modified under certain conditions, such
as the case th�= th in the two-channel model �under which
Im E�g4�. Then there are the crossover cases, such as the
crossover from the g6 decay rate to the g4 value as th� ap-
proaches th, described in Eq. �89�. Most importantly, there is
the case of the emerging QBIC described in Sec. III C 6 that
provides the most obvious starting place for experimental
detection. In this case, the QBIC peak in the LDOS profile is
amplified due to the Fano interference, as we have shown in
Fig. 25.

While we have demonstrated the above behaviors specifi-
cally for the two-channel quantum wire, it is easy to show
that the QBIC effect should occur in other one-dimensional
multichannel models which have the characteristic square
root divergence in the DOS given in Eq. �8�. For instance, in
a letter5 by Petrosky et al., the authors explored the effects of
the divergent singularity in the photon density of states at the
cutoff frequency in the interaction between an excited oscil-
lator �diatomic molecule, for instance� and the lowest trans-
verse electric �TE� mode in a rectangular waveguide. The
QBIC effect will also occur in this waveguide system when
the oscillator interacts with the second-lowest TE mode,
which has a cutoff frequency embedded in the continuum of
the lowest TE mode.

Hence, the origin of the QBIC effect is quite different
than that of the BIC effect originally proposed by von Neu-
mann and Wigner. On the one hand, we can associate each
QBIC state with a divergent band-edge singularity embedded
in the continuum of another energy band. On the other hand,
the BIC states are associated with zeros in the interaction
potential that occur in the continuous energy spectrum for
certain models with an oscillating potential. Hence the QBIC
is more closely associated with the DOS function, while the
BIC is more closely associated with the interaction potential.
It is also possible �even likely� that the QBIC effect will
appear in some two-dimensional systems �such as a two-
dimensional tight-binding lattice� that have a characteristic
logarithmic divergence in the DOS3,39 that may be embedded
in the continuum even in a single-channel model.

As we remarked in our previous letter,1 because our qua-
sibound state has a small decay rate �imaginary component

of the eigenenergy�, it is not, strictly speaking, “in con-
tinuum.” However, this decay rate is extremely small, such
that the QBIC state should behave as if it was a bound state
with real part of the eigenenergy deeply embedded in the
continuum even on relatively large time scales. In this sense,
the QBIC will essentially behave as the BIC under actual
experimental conditions. Meanwhile, the BIC is a true bound
state with a purely real energy spectrum but only under ideal
conditions. Since the BIC exists only at discrete points �with
zero measure� in the continuum any noise in the system
�such as thermal noise� in an experiment may actually lead to
a small decay rate for the BIC. On the contrary, since the
QBIC exists over a wide range of the energy spectrum �with
continuous measure�, it is robust against noise. Hence, it may
be easier to prepare the QBIC in experiment.

It should be mentioned that there may be certain models
with embedded singularities in which the QBIC effect due to
the DOS singularities will be washed out as a result of the
form of the interaction potential. There exist some examples
of a single-channel model in which the interaction potential
washes out the divergent behavior of the singularity and pre-
vents the persistent stable state from forming.6,19,20
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APPENDIX: NUMERICAL METHOD FOR TIME
EVOLUTION SIMULATION OF WAVE FUNCTIONS

In this appendix we describe our numerical method for
obtaining the time evolution of the wave functions of the
resonant states of the two-channel Hamiltonian. We rely on
the method which was proposed in previous work27 to solve
the time-dependent Schrödinger equation accurately �despite
truncation of the domain of x in numerical calculations�. The
time-dependent Schrödinger equation is given by

i�
�

�t
���t�� = Ĥ���t�� , �A1�

and the initial condition is fixed as

TWO-CHANNEL QUANTUM WIRE WITH AN ADATOM… PHYSICAL REVIEW B 80, 115318 �2009�

115318-29



���0�� = ��� , �A2�

where ��� is the eigenstate of H in Eq. �12�. We define the
time-dependent wave function as follows:

�d�t� � �d���t��, ��x,y ;t� � �x,y���t�� , �A3�

where y=1,2. The vector form of the wave functions is
given by

�� y�x,t� � 	��x,1;t�
��x,2;t�


 = e−iEt�� y�x� . �A4�

We restrict the region �x��L , �L�1� to compute the time
evolution of the wave function. The steady wave function
�� �x� in Eq. �17� has the following recursion property:

�� y�L + 1� = U�� ��L + 1�

= U�A+eiK+�L+1�	1

0

 + A−eiK−�L+1�	0

1

�

= U	eiK+ 0

0 eiK−

U−1U�� ��L�

= Veff�� y�L� , �A5�

where we have used Eqs. �14� and �17�. We have defined the
effective potential Veff as

Veff � U	eiK+ 0

0 eiK−

U−1 =

1

2
	eiK+ + eiK− eiK+ − eiK−

eiK+ − eiK− eiK+ + eiK−

 ,

�A6�

which we have extended from the scalar form of the chain
model.2,27,28 At x= �L�L�0�, using the effective potential
�Eq. �A6��, the left term of the time-dependent Schrödinger
equation �Eq. �A1�� becomes

Ĥeff�� y��L,t� = −
th

2
��� y���L − 1�,t� + �� y���L + 1�,t��

− th�	0 1

1 0

�� y��L,t�

= −
th

2
�� y���L − 1�,t� −

th

2
Veff�� y��L,t�

− th�S�� y��L,t� , �A7�

in which we define the matrix S by

S � 	0 1

1 0

 . �A8�

Thus, we can obtain the time-dependent Schrödinger equa-
tion in the closed region �x��L as follows:

i�
�

�t
�� y�x,t� =�

−
th

2
��� y���L − 1�,t� + Veff�� y��L,t�� − th�S�� y��L,t� for x = � L

−
th

2
��� y�x − 1,t� + �� y�x + 1,t�� − th�S�� y�x,t� for 1 � �x� � L − 1

−
th

2
��� y�− 1,t� + �� y�1,t�� − th�S�� y�0,t� + g�d�t�	1

0

 for x = 0

� �A9�

and

i�
�

�t
�d�t� = Ed�d�t� + g��0,1;t� . �A10�

This is the method by which we have produced the time-evolution simulations presented in Fig. 18.
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